Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 690))

Abstract

This lecture concerns limit cycles in renormalization group (RG) behavior of quantum Hamiltonians. Cyclic behavior is perhaps more common in quantum mechanics than the fixed-point behavior which is well-known from critical phenomena in classical statistical mechanics. We discuss a simple Hamiltonian model that exhibits limit cycle behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.G. Wilson. Renormalization group and strong interactions. Phys. Rev., D3:1818, 1971.

    ADS  Google Scholar 

  2. F.J. Wegner. Corrections to scaling laws. Phys. Rev., B5:4529, 1972.

    ADS  Google Scholar 

  3. L.H. Thomas. The interaction between a neutron and a proton and the structure of H3. Phys. Rev., 47:903, 1935.

    Article  MATH  ADS  Google Scholar 

  4. V. Efimov. Energy levels arising from resonant two-body forces in a three-body system. Phys. Lett., 33B:563, 1970.

    ADS  Google Scholar 

  5. P.F. Bedaque, H.W. Hammer, and U. van Kolck. Renormalization of the three-body system with short-range interactions. Phys. Rev. Lett., 82:463, 1999.

    Article  ADS  Google Scholar 

  6. E. Braaten, H.-W. Hammer, and M. Kusunoki. Efimov states in a Bose-Einstein condensate near a feshbach resonance. Phys. Rev. Lett., 90:170402, 2003.

    Article  ADS  Google Scholar 

  7. A. LeClair, J.M. Roman, and G. Sierra. Russian doll renormalization group and superconductivity. Phys. Rev., B69:20505, 2004.

    ADS  Google Scholar 

  8. E. Braaten and H.W. Hammer. An infrared renormalization group limit cycle in qcd. Phys. Rev. Lett., 91:102002, 2003.

    Article  ADS  Google Scholar 

  9. E. Braaten and D. Phillips. Renormalization-group limit cycle for the r -2 potential. Phys. Rev., A70:052111, 2004.

    ADS  Google Scholar 

  10. E. Nielsen, D.V. Fedorov, A.S. Jensen, and E. Garrido. The three-body problem with short-range interactions. Phys. Rept., 347:373, 2001.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. E. Braaten and H.W. Hammer. Universality in few-body systems with large scattering length, 2004, INT-PUB-04-27, cond-math/0410417.

    Google Scholar 

  12. R.F. Mohr Jr. Quantum mechanical three body problem with short range interactions. Ph.D. Thesis, Ohio State U., Advisor: R. J. Perry, UMI-31-09134-mc (microfiche), 2003. See also R.F. Mohr, R.J. Furnstahl, R.J. Perry, K.G. Wilson, H.-W. Hammer, Precise numerical results for limit cycles in the quantum three-body problem, Annals Phys. 321:225, 2006.

    Google Scholar 

  13. O.E. Landford III. Renormalization group methods for circle mappings, in statistical mechanics and field theory: Mathematical aspects, edited by T. C. Dorlas, N. M. Hugenholtz, M. Winnik, Springer Vg. Lecture Notes in Physics, 257:176, 1986.

    Article  ADS  Google Scholar 

  14. O.E. Landford III. Renormalization group methods for circle mappings, in G. Gallavotti, P.F. Zweifel (eds.). Nonlinear Evolution and Chaotic Phenomena, Plenum Press, p. 25, 1998.

    Google Scholar 

  15. M. Yampolsky. Hyperbolicity of renormalization of critical circle maps. Publ. Math. Inst. Hautes Etudes Sci., 96:1, 2002.

    MATH  MathSciNet  Google Scholar 

  16. M. Yampolsky. Global renormalization horseshoe for critical circle maps. Commun. Math. Physics, 240:75, 2003.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. R.S. MacKay. Renormalization in area-preserving maps. World Scientific, 1993.

    Google Scholar 

  18. J.M. Green and J. Mao. Higher-order fixed points of the renormalisation operator for invariant circles. Nonlinearity, 3:69, 1990.

    Article  MathSciNet  ADS  Google Scholar 

  19. C. Chandre and H.R. Jauslin. Renormalization-group analysis for the transition to chaos in Hamiltonian systems. Phys. Rep., 365:1, 2002.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. C. Chandre and H.R. Jauslin. Critical attractor and universality in a renormalization-group scheme for three frequency Hamiltonian systems. Phys. Rev. Lett., 81:5125, 1998.

    Article  ADS  Google Scholar 

  21. S.D. Glazek and K.G. Wilson. Renormalization of overlapping transverse divergences in a model light front Hamiltonian. Phys. Rev., D47:4657, 1993.

    ADS  Google Scholar 

  22. S.D. Glazek and K.G. Wilson. Limit cycles in quantum theories. Phys. Rev. Lett., 89:230401, 2002.

    Article  MathSciNet  ADS  Google Scholar 

  23. S.D. Glazek and K.G. Wilson. Erratum: Limit cycles in quantum theories [Phys. Rev. Lett. 89, 230401 (2002)]. Phys. Rev. Lett., 92:139901, 2004.

    Article  MathSciNet  ADS  Google Scholar 

  24. S.D. Glazek and K.G. Wilson. Universality, marginal operators, and limit cycles. Phys. Rev., B69:094304, 2004.

    ADS  Google Scholar 

  25. J.L. Roberts, N.R. Claussen, S.L. Cornish, and C.E. Wieman. Magnetic field dependence of ultracold inelastic collisions near a Feshbach resonance. Phys. Rev. Lett., 85:728, 2000.

    Article  ADS  Google Scholar 

  26. E.E. Salpeter. Wave functions in momentum space. Phys. Rev., 84:1226, 1951.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. T.D. Lee. Some special examples in renormalizable field theory. Phys. Rev., 95:1329, 1954.

    Article  MATH  ADS  Google Scholar 

  28. Y. Yamaguchi. Two-nucleon problem when the potential is nonlocal but separable. Phys. Rev., 95:1628, 1954.

    Article  MATH  ADS  Google Scholar 

  29. W. Heisenberg. Lee model and quantisation of non linear field equations. Nucl. Phys., 4:532, 1957.

    Article  MATH  Google Scholar 

  30. Ya. B. Zel’ dovich. Journal of theoretical and experimental physics. Soviet Physics JETP, 11:594, 1960.

    MathSciNet  Google Scholar 

  31. F.A. Berezin and L.D. Faddeev. A remark on Schroedinger’ s equation with a singular potential. Dokl. Akad. Nauk USSR, 137:1011, 1961. English translation in: Sov. Math., Dokl. 2, 372 (1961).

    MATH  MathSciNet  Google Scholar 

  32. R. Jackiw. Delta function potentials in two-dimensional and three-dimensional quantum mechanics. In A. Ali and P. Hoodbhoy, editors, M. A. B. Bég Memorial Volume, Singapore, 1991. World Scientific.

    Google Scholar 

  33. R.L. Jaffe and L.R. Williamson. The Casimir energy in a separable potential. Ann. Phys., 282:432, 2000.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. J. Dereziński and R. Früboes. Renormalization of the Friedrichs Hamiltonian. Rep. Math. Phys., 50:433, 2002.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  35. D.R. Yafaev. General Theory, volume 105 of Amer. Math. Soc. Trans. Amer. Math. Soc., Providence RI, 1992.

    Google Scholar 

  36. S. Albeverio and P. Kurasov. Singular Perturbations of Diffierential Operators, volume 271 of Lond. Math. Soc. Lect. Note Ser. Cambridge University Press, Cambridge, 2000.

    Google Scholar 

  37. K.G. Wilson. Model Hamiltonians for local quantum field theory. Phys. Rev., 140:B445, 1965.

    Article  ADS  Google Scholar 

  38. K.G. Wilson. Model of coupling-constant renormalization. Phys. Rev., D2:1438, 1970.

    ADS  Google Scholar 

  39. D.J. Gross and F. Wilczek. Ultraviolet behavior of non-abelian gauge theories. Phys. Rev. Lett., 30:1343, 1973.

    Article  ADS  Google Scholar 

  40. H.D. Politzer. Reliable perturbative results for strong interactions? Phys. Rev. Lett., 30:1346, 1973.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Głazek, S.D. (2006). Limit Cycles in Quantum Mechanics. In: Asch, J., Joye, A. (eds) Mathematical Physics of Quantum Mechanics. Lecture Notes in Physics, vol 690. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-34273-7_8

Download citation

Publish with us

Policies and ethics