Skip to main content

Recent Results on Quantum Map Eigenstates

  • Chapter
Mathematical Physics of Quantum Mechanics

Part of the book series: Lecture Notes in Physics ((LNP,volume 690))

  • 2670 Accesses

Abstract

One of the central problems in quantum chaos is to obtain a good understanding of the semi-classical behaviour of the eigenfunctions of quantum systems that have a chaotic Hamiltonian system as their classical limit. The pivotal result in this context, and the only general one to date, is the Schnirelman Theorem. Loosely speaking, it states that, if the underlying classical dynamics is ergodic on the appropriate energy surface, then “most” eigenfunctions of the quantum system equidistribute on this energy surface. The challenge is to go beyond this theorem. I will report here on the progress that has been made in this direction in recent years for the special case of quantum maps on the torus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Anantharaman, The eigenfunctions of the Laplacian do not concentrate on sets of small topological entropy, preprint june 2004.

    Google Scholar 

  2. N. Anantharaman, private communication, march 2005.

    Google Scholar 

  3. M. Blank, G. Keller, C. Liverani, Ruelle-Perron-Frobenius spectrum for Anosov maps, Nonlinearity 15, no. 6, 1905–1973 (2002).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. J. M. Bouclet, S. De Bièvre, Long time propagation and control on scarring for perturbed quantized hyperbolic toral automorphisms, mp_arc 04-305, Annales H. Poincaré, to appear.

    Google Scholar 

  5. A. Bouzouina, S. De Bièvre, Equipartition of the eigenfunctions of quantized ergodic maps on the torus, Comm. Math. Phys. 178, 83–105 (1996).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. A. Bouzouina, S. De Bièvre, Equidistribution des valeurs propres et ergodicité semi-classique de symplectomorphismes du tore quantifiés, C. R. Acad. Sci. Paris, Série I t.326, 1021–1024 (1998).

    MATH  ADS  Google Scholar 

  7. P. Corvaja, Z. Rudnick, U. Zannier, A lower bound for periods of matrices, Comm. Math. Phys. 252, 1–3, 535–541 (2004).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. F. Bonecchi, S. De Bièvre, Exponential mixing and |lnħ| time scales in quantized hyperbolic maps on the torus, Comm. Math. Phys. 211, 659–686 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  9. F. Bonecchi, S. De Bièvre, Controlling strong scarring for quantized ergodictoral automorphisms, Duke Math. J, Vol. 117, No. 3, 571–587 (2003).

    Article  MathSciNet  Google Scholar 

  10. F. Bonecchi, S. De Bièvre, Controlling strong scarring for quantized ergodictoral automorphisms, Section 5, mp_arc 02–81 (2002).

    Google Scholar 

  11. S. De Bièvre, Quantum chaos: a brief first visit, mp_arc 01-207, Contemporary Mathematics 289, 161–218 (2001).

    MATH  Google Scholar 

  12. S. De Bièvre, M. Degli Esposti, Egorov Theorems and equipartition of eigenfunctions for quantized sawtooth and Baker maps on the torus, mp_arc 96_210, Ann. Inst. H. Poincaré 69, 1, 1–30 (1998).

    MATH  Google Scholar 

  13. M. Degli Esposti, S. Graffi, S. Isola, Stochastic properties of the quantum Arnold cat in the classical limit, Commun. Math. Phys. 167, 471–509 (1995).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. M. Degli Esposti, S. Nonnenmacher, B. Winn, Quantum variance and ergodicity for the baker’s map, preprint (2004), Commun. Math. Phys., to appear.

    Google Scholar 

  15. F. Faure, S. Nonnenmacher, S. De Bièvre, Scarred eigenstates for quantum cats of minimal periods, Commun. Math. Phys. 239, 449–492 (2003).

    Article  MATH  ADS  Google Scholar 

  16. F. Faure, S. Nonnenmacher, On the maximal scarring for quantum cat map eigenstates, Commun. Math. Phys. 245, 201–214 (2004).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. F. Faure, S. Nonnenmacher, contribution at the Workshop on Random Matrix theory and Arithmetic Aspects of Quantum Chaos, Newton Institute, Cambridge, june 2004.

    Google Scholar 

  18. J.H. Hannay, M.V. Berry, Quantization of linear maps-Fresnel diffraction by a periodic grating, Physica D 1, 267–290 (1980).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. E.J. Heller, Bound-state eigenfunctions of classically chaotic hamiltonian systems: scars of periodic orbits, Phys. Rev. Lett. 53, 16, 1515–1518 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  20. J.P. Keating, Asymptotic properties of the periodic orbits of the cat maps, Nonlinearity 4, 277–307 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  21. J.P. Keating, F. Mezzadri, Pseudo-symmetries of Anosov maps and Spectral statistics, Nonlinearity 13, 747–775 (2000).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. P. Kurlberg, Z. Rudnick, Hecke theory and equidistribution for the quantization of linear maps of the torus, Duke Math. J. 103, 1, 47–77 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  23. P. Kurlberg, Z. Rudnick, On quantum ergodicity for linear maps of the torus, Comm. Math. Phys. 222, 1, 201–227 (2001).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. E. Lindenstrauss, Invariant measures and arithmetic quantum unique ergodicity, Annals of Math., to appear.

    Google Scholar 

  25. J. Marklof, S. O’Keefe, Weyl’s law and quantum ergodicity for maps with divided phase space, mp_arc 04-122, Nonlinearity 18, 277–304 (2005).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. S. Zelditch, Quantum ergodicity and mixing of eigenfunctions, math-ph/0503026, preprint (2005), Elsevier Encyclopedia of Mathematical Physics, to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

De Bièvre, S. (2006). Recent Results on Quantum Map Eigenstates. In: Asch, J., Joye, A. (eds) Mathematical Physics of Quantum Mechanics. Lecture Notes in Physics, vol 690. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-34273-7_27

Download citation

Publish with us

Policies and ethics