Skip to main content

Solving the Ten Martini Problem

  • Chapter

Part of the book series: Lecture Notes in Physics ((LNP,volume 690))

Abstract

We discuss the recent proof of Cantor spectrum for the almost Mathieu operator for all conjectured values of the parameters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Aubry, The new concept of transition by breaking of analyticity. Solid State Sci. 8, 264 (1978).

    MathSciNet  Google Scholar 

  2. A. Avila and S. Jitomirskaya, The ten martini problem. Preprint (www.arXiv.org).

    Google Scholar 

  3. A. Avila and R. Krikorian, Reducibility or non-uniform hyperbolicity for quasiperiodic Schrödinger cocycles. Preprint (www.arXiv.org). To appear in Annals of Math.

    Google Scholar 

  4. J. E. Avron, D. Osadchy, and R. Seiler, A topological look at the quantum Hall effect, Physics today, 38–42, August 2003.

    Google Scholar 

  5. J. Avron and B. Simon, Almost periodic Schrödinger operators. II. The integrated density of states. Duke Math. J. 50, 369–391 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  6. J. Avron, P. van Mouche, and B. Simon, On the measure of the spectrum for the almost Mathieu operator. Commun. Math. Phys. 132, 103–118 (1990).

    Article  MATH  ADS  Google Scholar 

  7. M. Ya. Azbel, Energy spectrum of a conduction electron in a magnetic field. Sov. Phys. JETP 19, 634–645 (1964).

    Google Scholar 

  8. J. Bellissard, B. Simon, Cantor spectrum for the almost Mathieu equation. J. Funct. Anal. 48, 408–419 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  9. J. Bourgain, S. Jitomirskaya, Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential, Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdays. J. Statist. Phys. 108, 1203–1218 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Bourgain, S. Jitomirskaya, Absolutely continuous spectrum for 1D quasiperiodic operators, Invent. math. 148, 453–463 (2002).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. M.D. Choi, G.A. Eliott, N. Yui, Gauss polynomials and the rotation algebra. Invent. Math. 99, 225–246 (1990).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. L. H. Eliasson, Floquet solutions for the one-dimensional quasi-periodic Schrödinger equation. Commun. Math. Phys. 146, 447–482 (1992).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. S. Jitomirskaya, Metal-Insulator transition for the almost Mathieu operator. Annals of Math. 150, 1159–1175 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  14. S. Ya. Jitomirskaya, I. V. Krasovsky, Continuity of the measure of the spectrum for discrete quasiperiodic operators. Math. Res. Lett. 9, no. 4, 413–421 (2002).

    MATH  MathSciNet  Google Scholar 

  15. P.G. Harper, Single band motion of conduction electrons in a uniform magnetic field, Proc. Phys. Soc. London A 68, 874–892 (1955).

    Article  MATH  ADS  Google Scholar 

  16. B. Helffer and J. Sjöstrand, Semiclassical analysis for Harper’s equation. III. Cantor structure of the spectrum. Mm. Soc. Math. France (N.S.) 39, 1–124 (1989).

    Google Scholar 

  17. S. Kotani, Lyapunov indices determine absolutely continuous spectra of stationary random one-dimensional Schrö dinger operators. Stochastic analysis (Katata/Kyoto, 1982), 225–247, North-Holland Math. Library, 32, North-Holland, Amsterdam, 1984.

    Google Scholar 

  18. Y. Last, Zero measure of the spectrum for the almost Mathieu operator, CMP 164, 421–432 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  19. Y. Last, Spectral theory of Sturm-Liouville operators on infinite intervals: a review of recent developments. Preprint 2004.

    Google Scholar 

  20. P.M.H. van Mouche, The coexistence problem for the discrete Mathieu operator, Comm. Math. Phys., 122, 23–34 (1989).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. R. Peierls, Zur Theorie des Diamagnetismus von Leitungselektronen. Z. Phys., 80, 763–791 (1933).

    Article  MATH  ADS  Google Scholar 

  22. J. Puig, Cantor spectrum for the almost Mathieu operator, Comm. Math. Phys., 244, 297–309 (2004).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. A. Rauh, Degeneracy of Landau levels in chrystals, Phys. Status Solidi B 65, K131–135 (1974).

    Article  ADS  Google Scholar 

  24. B. Simon, Kotani theory for one-dimensional stochastic Jacobi matrices, Comm. Math. Phys. 89, 227–234 (1983).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. B. Simon, Schrö dinger operators in the twenty-first century, Mathematical Physics 2000, Imperial College, London, 283–288.

    Google Scholar 

  26. Ya. Sinai, Anderson localization for one-dimensional difference Schrö dinger operator with quasi-periodic potential. J. Stat. Phys. 46, 861–909 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  27. D.J. Thouless, M. Kohmoto, M.P. Nightingale and M. den Nijs, Quantised Hall conductance in a two dimensional periodic potential, Phys. Rev. Lett. 49, 405–408 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Avila, A., Jitomirskaya, S. (2006). Solving the Ten Martini Problem. In: Asch, J., Joye, A. (eds) Mathematical Physics of Quantum Mechanics. Lecture Notes in Physics, vol 690. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-34273-7_2

Download citation

Publish with us

Policies and ethics