Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 690))

Abstract

We consider random Schrädinger equations on R d or Z d for d ≥ 3 with uncorrelated, identically distributed random potential. Denote by ⋋ the coupling constant and ψt the solution with initial data ψ0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Aizenman and S. Molchanov: Commun. Math. Phys. 157, 245 (1993).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. P. Anderson: Phys. Rev. 109, 1492 (1958).

    Article  ADS  Google Scholar 

  3. C. Boldrighrini, L. Bunimovich and Y. Sinai: J. Statis. Phys. 32 no. 3, 477 (1983).

    Article  ADS  Google Scholar 

  4. J. Bourgain: Random lattice Schrödinger operators with decaying potential: some higher dimensional phenomena (Lecture Notes in Mathematics Vol. 1807 (Springer, Berlin Heidelberg New York 2003) pp 70–99.

    Google Scholar 

  5. L. Bunimovich, Y. Sinai: Commun. Math. Phys. 78, 479 (1980/81).

    Article  MathSciNet  ADS  Google Scholar 

  6. T. Chen: Localization Lengths and Boltzmann Limit for the Anderson Model at Small Disorders in Dimension 3. Preprint (2003) http://xxx.lanl.gov/abs/math-ph/0305051.

    Google Scholar 

  7. D. Dürr, S. Goldstein, J. Lebowitz: Commun. Math. Phys. 78, 507 (1980/81).

    Article  ADS  Google Scholar 

  8. D. Dürr, S. Goldstein, J. Lebowitz: Commun. Math. Phys. 113, 209 (1987).

    Article  MATH  ADS  Google Scholar 

  9. L. Erdős: J. Statis. Phys. 107, 1043 (2002).

    Article  Google Scholar 

  10. L. Erdős and H.-T. Yau: Commun. Pure Appl. Math. LIII, 667 (2000).

    Article  Google Scholar 

  11. L. Erdős, M. Salmhofer and H.-T. Yau: Quantum diffusion of the random Schrödinger evolution in the scaling limit. Preprints (2005) http://xxx.lanl.gov/abs/math-ph/0502025, 0512014, 0512015

    Google Scholar 

  12. J. Fröhlich and T. Spencer: Commun. Math. Phys. 88, 151 (1983).

    Article  MATH  ADS  Google Scholar 

  13. T.G. Ho, L.J. Landau and A.J. Wilkins: Rev. Math. Phys. 5, 209 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  14. G. Gallavotti: Rigorous theory of the Boltzmann equation in the Lorentz model. Nota interna n. 358, Physics Department, Universita di Roma, pp. 1–9 (1972) mp_arc@math.utexas.edu, # 93–304.

    Google Scholar 

  15. I.Ya. Goldsheid, S.A. Molchanov and L.A. Pastur: Funct. Anal. Appl. 11, 1 (1997).

    Google Scholar 

  16. H. Kesten, G. Papanicolaou: Comm. Math. Phys. 78, 19 (1980/81).

    Article  MathSciNet  ADS  Google Scholar 

  17. A. Klein: Math. Res. Lett. 1, 399 (1994).

    MATH  MathSciNet  Google Scholar 

  18. T. Komorowski, L. Ryzhik: Diffusion in a weakly random Hamiltonian flow. Preprint (2004).

    Google Scholar 

  19. O. Lanford: Astérisque 40, 117 (1976).

    MathSciNet  Google Scholar 

  20. P.A. Lee and T.V. Ramakrishnan: Rev. Mod. Phys. 57, 287 (1985).

    Article  ADS  Google Scholar 

  21. J. Lukkarinen and H. Spohn Kinetic limit for wave propagation in a random medium. Preprint. http://xxx.lanl.gov/math-ph/0505075

    Google Scholar 

  22. I. Rodnianski and W. Schlag: Int. Math. Res. Not. 5, 243 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  23. E. Seiler, Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics. Lecture Notes in Physics 159 (Springer, Berlin Heidelberg New York 1982).

    Google Scholar 

  24. W. Schlag, C. Shubin, T. Wolff: J. Anal. Math. 88, 173 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  25. H. Spohn: J. Statist. Phys. 17, 385 (1977).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. H. Spohn: Commun. Math. Phys. 60, 277 (1978).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. D. Vollhardt and P. Wölfle: Phys. Rev. B 22, 4666 (1980).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Erd os, L., Salmhofer, M., Yau, HT. (2006). Towards the Quantum Brownian Motion. In: Asch, J., Joye, A. (eds) Mathematical Physics of Quantum Mechanics. Lecture Notes in Physics, vol 690. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-34273-7_18

Download citation

Publish with us

Policies and ethics