Skip to main content

Acidocalcisomes and Polyphosphate Granules

  • Chapter
Inclusions in Prokaryotes

Part of the book series: Microbiology Monographs ((MICROMONO,volume 1))

Abstract

Polyphosphate (poly P) granules were one of the first subcellular structures described in bacteria and are characterized by their high content of phosphorus in the form of poly P. Recent work has shown that poly P granules have a limiting membrane and possess an enzymatic mechanism for their acidification. Their electron density and enrichment in pyrophosphate (PPi), poly P, and cations such as calcium and magnesium are characteristics in common with those of the organelles described as acidocalcisomes in a number of eukaryotic cells, including human platelets, indicating that they have been conserved during evolution from prokaryotes to eukaryotes. Acidocalcisomes have multiple functions that are related to the functions of their main constituents, PPi, poly P, and cations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akiyama M, Crooke E, Kornberg A (1992) The polyphosphate kinase gene of Escherichia coli. Isolation and sequence of the ppk gene and membrane location of the protein. J Biol Chem 267:22556–22561

    PubMed  CAS  Google Scholar 

  • Akiyama M, Crooke E, Kornberg A (1993) An exopolyphosphatase of Escherichia coli. The enzyme and its ppx gene in a polyphosphate operopn. J Biol Chem 268:633–639

    PubMed  CAS  Google Scholar 

  • Archibald FS, Fridovich I (1982) Investigations of the state of the manganese in Lactobacillus plantarum. Arch Biochem Biophys 215:589–596

    Article  PubMed  CAS  Google Scholar 

  • Ayraud S, Janvier B, Salaun L, Fauchere JL (2003) Modification in the ppk gene of Helicobacter pylori during single and multiple experimental murine infections. Infect Immun 71:1733–1739

    Article  PubMed  CAS  Google Scholar 

  • Babes V (1985) Beoachtungen über die metachromatischen Körperchen, Sporenbildung, Verzweigung, Kolben-und Kapselbildung pathogener Bakterien. Z Hyg Infektkr 20:412–420

    Article  Google Scholar 

  • Baltscheffsky H, Von Sterdingk LV, Heldt HW, Klingenberg M (1966) Inorganic pyrophosphate: formation in bacterial photophosphorylation. Science 153:1120–1122

    PubMed  CAS  Google Scholar 

  • Baltscheffsky M, Schultz A, Baltscheffsky H (1999) H+-PPases: a tightly membrane-bound family. FEBS Lett 457:527–533

    Article  PubMed  CAS  Google Scholar 

  • Baxter M, Jensen T (1980) Uptake of magnesium, strontium, barium, and manganese by Plectonema boryanum (Cyanophyceae) with special reference to polyphosphate bodies. Protoplasma 104:81–89

    Article  CAS  Google Scholar 

  • Belogurov GA, Lahti R (2002) A lysine substitute for K+. A46K mutation elim inates K+ dependence in H+-pyrophosphatase of Carboxydothermus hydrogenoformans. J Biol Chem 277:49651–49654

    Article  PubMed  CAS  Google Scholar 

  • Blum E, Py B, Carpousis AJ, Higgins CF (1997) Polyphosphate kinase is a component of the Escherichia coli RNA degradosome. Mol Microbiol 26:387–398

    Article  PubMed  CAS  Google Scholar 

  • Bonting CFC, Korstee GJJ, Zehnder AJB (1991) Properties of polyphosphate:AMP phosphotransferase of Acinetobacter strain 210A. J Bacteriol 173:6484–6488

    PubMed  CAS  Google Scholar 

  • Cagen LM, Friedmann HC (1972) Enzymatic phosphorylation of serine. J Biol Chem 247:3382–3392

    PubMed  CAS  Google Scholar 

  • Castuma CE, Huang R, Kornberg A, Reusch RN (1995) Inorganic polyphosphates in the acquisition of competence in Escherichia coli. J Biol Chem 270:12980–12983

    Article  PubMed  CAS  Google Scholar 

  • Chapman AG, Atkinson DE (1977) Adenine nucleotide concentrations and turnover rates. The correlation with biological activity in bacteria and yeast. Adv Microbiol Physiol 15:253–306

    CAS  Google Scholar 

  • Chen W, Palmer RJ, Kuramitsu HK (2002) Role of polyphosphate kinase in biofilm formation by Porphyromonas gingivalis. Infect Immun 70:4708–4715

    Article  PubMed  CAS  Google Scholar 

  • Crooke E, Akiyama M, Rao NN, Kornberg A (1994) Genetically altered levels of inorganic polyphosphate in Escherichia coli. J Biol Chem 269:6290–6295

    PubMed  CAS  Google Scholar 

  • Deinema MH, VanLoosdrecht M, Scholten A (1985) Some physiological characteristics of Acitenobacter spp. accumulating large amounts of phosphate. Water Sci Technol 17:119–125

    CAS  Google Scholar 

  • Docampo R, Scott DS, Vercesi AE, Moreno SNJ (1995) Intracellular Ca2+ storage in acidocalcisomes of Trypanosoma cruzi. Biochem J 310:1005–1012

    PubMed  CAS  Google Scholar 

  • Docampo R, de Souza W, Miranda K, Rohloff P, Moreno SNJ (2005) Acidocalcisomes—conserved from bacteria to man. Nat Rev Microbiol 3:251–261

    Article  PubMed  CAS  Google Scholar 

  • Erhart R, Bradford D, Sevior RJ, Amann R, Blackall LL (1997) Development and use of fluorescent in situ hybridization probes for the detection and identification of Micotrix parvicella in activated sludge. Syst Appl Microbiol 20:310–318

    Google Scholar 

  • Evans HJ, Wood HG (1968) The mechanism of the pyruvate, phosphate dikinase reaction. Proc Natl Acad Sci USA 61:1448–1453

    Article  PubMed  CAS  Google Scholar 

  • Friedberg I, Avigad G (1968) Structures containing polyphosphate in Micrococcus lysodeikticus. J Bacteriol 96:544–553

    PubMed  CAS  Google Scholar 

  • Garavaglia S, Galizzi A, Rizzi M (2003) Allosteric regulation of Bacillus subtilis NAD kinase by quinolinic acid. J Bacteriol 185:4844–4850

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez H, Jensen TE (1998) Nickel sequestration by polyphosphate bodies in Staphylococcus aureus. Microbios 93:179–185

    PubMed  CAS  Google Scholar 

  • Hardoyo, Yamada K, Shinjo H, Kato J, Ohtake H (1994) Production and release of polyphosphate by a genetically engineered strain of Escherichia coli. Appl Environm Microbiol 60:3485–3490

    CAS  Google Scholar 

  • Harold FM (1966) Inorganic polyphosphates in biology: structure, metabolism, and function. Bacteriol Rev 30:772–794

    PubMed  CAS  Google Scholar 

  • Hensgens CM, Santos H, Zhang C, Kruizinga WH, Hansen TA (1996) Electron-dense granules in Desulfibrio gigas do not consist of inorganic triphosphate but of a glucose pentakis(diphosphate). Eur J Biochem 242:327–331

    Article  PubMed  CAS  Google Scholar 

  • Hsieh P-C, Shenoy BC, Jentoft JE, Phillips NFB (1993) Purification of polyphosphate and ATP glucose phosphotransferase from Mycobacterium tuberculosis H37Ra: evidence that poly (P) and ATP glucokinase activities are catalyzed by the same enzyme. Protein Expr Purif 4:76–84

    Article  PubMed  CAS  Google Scholar 

  • Huang RP, Reusch RN (1995) Genetic competence in Escherichia coli requires polybeta-hydroxybutirate calcium polyphosphate membrane complex and certain divalent cations. J Bacteriol 177:486–490

    PubMed  CAS  Google Scholar 

  • Ishige K, Noguchi T (2000) Inorganic polyphosphate kinase and adenylate kinase participate in the polyphosphate:AMP phosphotransferase activity of Escherichia coli. Proc Natl Acad Sci USA 97:14168–14171

    Article  PubMed  CAS  Google Scholar 

  • Ishige K, Noguchi T (2001) Polyphosphate:AMP phosphotransferase and polyphosphate: ADP phosphotransferase activities in Pseudomonas aeruginosa. Biochem Biophys Res Commun 281:821–826

    Article  PubMed  CAS  Google Scholar 

  • Ishige K, Zhang H, Kornberg A (2002) Polyphosphate kinase (PPK2), a potent polyphosphate-driven generator of GTP. Proc Natl Acad Sci USA 99:16684–16688

    Article  PubMed  CAS  Google Scholar 

  • Jensen TE (1968) Electron microscopy of polyphosphate bodies in a blue-green alga, Nostoc pruniforme. Arch Mikrobiol 62:144–152

    Article  Google Scholar 

  • Jensen TE, Rachlin JW, Jani V, Warkentine B (1982) An X-ray energy dispersive study of cellular compartmentalization of lead and zinc in Chlorella saccharophila (Chlorophyta), Navicula incerta and Nitzschia closterium (Bacillariophyta). Environ Exp Bot 22:319–328

    Article  CAS  Google Scholar 

  • Kato J, Yamada K, Muramatsu A, Hardoyo T, Ohtake H (1993) Genetic improvement of Escherichia coli for the enhanced biological removal of phosphate. Appl Environ Microbiol 59:3744–3749

    PubMed  CAS  Google Scholar 

  • Kawai S, Mori S, Mukai T, Suzuki S, Yamada T, Hashimoto W, Murata K (2000) Inorganic polyphosphate/ATP-NAD kinase of Micrococcus flavus and Mycobacterium tuberculosis H37Rv. Biochem Biophys Res Commun 276:57–63

    Article  PubMed  CAS  Google Scholar 

  • Keasling JD (1997) Regulation of intracellular toxic metals and other cations by hydrolysis of polyphosphate. Ann New York Acad Sci 829:243–249

    Google Scholar 

  • Keasling JD, Bertsch LR, Kornberg A (1993) Guanosine pentaphosphate phosphohydrolase of Escherichia coli is a long chain exopolyphosphatase. Proc Natl Acad Sci USA 90:7029–7033

    Article  PubMed  CAS  Google Scholar 

  • Keasling JD, Hupf GA (1996) Genetic manipulation of polyphosphate metabolism affects cadmium tolerance in Escherichia coli. Appl Environ Microbiol 62:743–746

    PubMed  CAS  Google Scholar 

  • Kim KS, Rao NN, Fraley CD, Kornberg A (2002) Inorganic polyphosphate is essential for long-term survival and virulence factors in Shigella and Salmonella spp. Proc Natl Acad Sci USA 99:7675–7680

    Article  PubMed  CAS  Google Scholar 

  • Kornberg A (1995) Inorganic polyphosphate: toward making a forgotten polymer unforgettable. J Bacteriol 177:491–496

    PubMed  CAS  Google Scholar 

  • Kornberg A, Rao NN, Ault-Riché D (1999) Inorganic polyphosphate: a molecule of many functions. Annu Rev Biochem 68:89–125

    Article  PubMed  CAS  Google Scholar 

  • Kristensen O, Laurberg M, Liljas A, Kastrup JS, Gajhede M (2004) Structural characterization of the stringent response related exopolyphosphatase/guanosine pentaphosphate phosphohydrolase protein family. Biochem 43:8894–8900

    Article  CAS  Google Scholar 

  • Kulaev I, Kulakovskaya T (2000) Polyphosphate and phosphate pump. Annu Rev Microbiol 54:709–734

    Article  PubMed  CAS  Google Scholar 

  • Kulaev I, Vagabov V, Kulakovskaya T (1999) New aspects of inorganic polyphosphate metabolism and function. J Biosci Bioeng 88:111–129

    Article  PubMed  CAS  Google Scholar 

  • Kuroda A, Murphy M, Cashel M, Kornberg A (1997) Guanosine tetra-and pentaphosphate promote accumulation of inorganic polyphosphate in Escherichia coli. J Biol Chem 272:21240–21243

    Article  PubMed  CAS  Google Scholar 

  • Kuroda A, Ohtake H (2000) Molecular analysis of polyphosphate accumulation in bacteria. Biochemistry (Moscow) 65:304–308

    CAS  Google Scholar 

  • Kuroda A, Tanaka S, Ikeda T, Kato J, Takiguchi N, Ohtake H (1999) Inorganic polyphosphate kinase is required to stimulate protein degradation and the adaptation to amino acid starvation in Escherichia coli. Proc Natl Acad Sci USA 96:14264–14269

    Article  PubMed  CAS  Google Scholar 

  • Kuroda A, Nomura K, Ohtomo R, Kato J, Ikeda T, Takiguchi N, Ohtake H, Kornberg A (2001) Role of inorganic polyphosphate in promoting ribosomal protein degradation by the Lon protease in E. coli. Science 293:705–708

    Article  PubMed  CAS  Google Scholar 

  • Kusano S, Ishihama A (1997) Functional interaction of Escherichia coli RNA polymerase with inorganic polyphosphate. Genes Cells 2:433–441

    Article  PubMed  CAS  Google Scholar 

  • Markham GD, Hafner EW, Tabor CW, Tabor H (1980) S-Adenosylmethionine synthetase from Escherichia coli. J Biol Chem 255:9082–9092

    PubMed  CAS  Google Scholar 

  • Meyer A (1904) Orientierende Untersuchungen über Verbreitung, Morphologie und Chemie des Volutins. Bot Z 62:113–152

    Google Scholar 

  • Morohoshi T, Maruo T, Shirai Y, Kato J, Ikeda T, Takiguchi N, Ohtake H, Kuroda A (2002) Accumulation of inorganic polyphosphate in phoU mutants of Escherichia coli and Synechocystis sp. strain PCC6803. Appl Environm Microbiol 68:4107–4110

    Article  CAS  Google Scholar 

  • Mukai T, Kawai S, Matsukawa H, Matuo Y, Murata K (2003) Characterization and molecular cloning of a novel enzyme, inorganic polyphosphate/ATP-glucomannokinase, of Arthrobacter sp. strain KM. App Environm Microbiol 69:3849–3857

    Article  CAS  Google Scholar 

  • Mukai T, Kawai S, Mori S, Mikami B, Murata K (2004) Crystal structure of bacterial inorganic polyphosphate/ATP-glucomannokinase. Insights into kinase evolution. J Biol Chem 279:50591–50600

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K, Hiraishi A, Yoshimi Y, Kawaharasaki M, Masuda K, Kamagata Y (1995) Microlunatus phosphovorus gen. nov. sp. nov., a new gram-positive polyphosphate-accumulating bacterium isolated form activated sludge. Int J Syst Bacteriol 45:17–22

    Article  PubMed  CAS  Google Scholar 

  • Nesmeyanova MA, Gonina SA, Kulaev IS (1975) Bionsynthesis of poly P and alkaline phosphatase in E. coli is under control of integrated regulatory genes. Dokl Akad Nauk SSSR 224:710–712

    CAS  Google Scholar 

  • Nierzwicki-Bauer SA, Balkwill DL, Stevens SE Jr (1983) Three-dimensional ultrastructure of a unicellular cyanobacterium. J Cell Biol 97:713–722

    Article  PubMed  CAS  Google Scholar 

  • Nomura K, Kato J, Takiguchi N, Ohtake H, Kuroda A (2004) Effects of inorganic polyphosphate on the proteolytic and DNA-binding activities of Lon in Escherichia coli. J Biol Chem 279:34406–34410

    Article  PubMed  CAS  Google Scholar 

  • O’Brien WE, Bowien S, Wood HG (1975) Isolation and characterization of a pyrophosphate-dependent phosphofructokinase from Propionobacterium shermanii. J Biol Chem 250:8690–8695

    PubMed  CAS  Google Scholar 

  • Ohtake H, Yamada K, Hardoyo, Muramatsu A, Anbe Y, Kato J, Shinjo H (1994) Genetic approach to enhanced biological phosphorous removal. Wat Sci Technol 30:185–192

    CAS  Google Scholar 

  • Ohtake H, Kato J, Kuroda A, Ikeda T (1998) Regulation of bacterial phosphate taxis and polyphosphate accumulation in response to phosphate starvation stress. J Biosci 23:491–499

    CAS  Google Scholar 

  • Pan-Hou H, Kiyono M, Omura H, Omura T, Endo G (2002) Polyphosphate produced in recombinant Escherichia coli confers mercury resistance. FEMS Microbiol Lett 10325:159–164

    Article  Google Scholar 

  • Porcelli M, Cacciapuoti G, Carteni-Farina M, Gambacorta A (1988) S-adenosylmethionine in the thrermophilic archaebacterium Sulfolobus solfataricus. Purification and characterization of two isoforms. Eur J Biochem 177:273–280

    Article  PubMed  CAS  Google Scholar 

  • Rachlin JW, Jensen TE, Warkentine B (1985) Morphometric analysis of the response of Anabena flos-aquae and Anabena variabilis (Cyanophyceae) to selected concentrations of zinc. Arch Enrivon Contam Toxicol 14:395–400

    Article  CAS  Google Scholar 

  • Rao NN, Kornberg A (1996) Inorganic polyphosphate supports resistance and survival of stationary-phase Escherichia coli. J Bacteriol 1778:1394–1400

    Google Scholar 

  • Rashid MH, Kornberg A (2000) Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 97:4885–4890

    Article  PubMed  CAS  Google Scholar 

  • Rashid MH, Rao NN, Kornberg A (2000) Inorganic polyphosphate is required for motility of bacterial pathogens. J Bacteriol 182:225–227

    Article  PubMed  CAS  Google Scholar 

  • Rashid MH, Rumbaugh K, Passador L, Davies DG, Hamood AN, Iglewski BH, Kornberg A (2000b) Poplyphosphate kinase is essential for biofilm development, quorum sensing, and virulence of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 97:9636–9641

    Article  PubMed  CAS  Google Scholar 

  • Reeves RE (1968) A new enzyme with the glycolytic function of pyruvate kinase. J Biol Chem 243:3202–3204

    PubMed  CAS  Google Scholar 

  • Reusch RN (1999) Polyphosphate/poly-(R)-3-hydroxybutyrate ion channels in cell membranes. In: Schröder HC, Müller WEG (eds) Progress in molecular and subcellular biology, vol 23. Springer, Berlin Heidelberg New York, pp 151–182

    Google Scholar 

  • Reusch RN, Sadoff HL (1988) Putative structure and functions of poly-beta-hydroxybutyrate/calcium polyphosphate channel in bacterial plasma membranes. Proc. Natl Acad Sci USA 85:4176–4180

    Article  PubMed  CAS  Google Scholar 

  • Serrano A (2004) Comparative functional and structural genomics of inorganic pyrophosphatase reveal dynamic evolutionary stories. In: White SA (ed) Recent advances in inorganic pyrophosphatase research. The University of Birmingham, Birmingham, pp 12–17

    Google Scholar 

  • Seufferheld M, Vieira MCF, Ruiz FA, Rodrigues CO, Moreno SNJ, Docampo R (2003) Identification in bacteria of organelles similar to acidocalcisomes of unicellular eukaryotes. J Biol Chem 278:29971–29978

    Article  PubMed  CAS  Google Scholar 

  • Seufferheld M, Lea C, Vieira M, Oldfield E, Docampo R (2004) The H+-pyrophosphatase of Rhodospirillum rubrum is predominantly located in polyphosphate-rich acidocalcisomes. J Biol Chem 279:51193–51202

    Article  PubMed  CAS  Google Scholar 

  • Shi X, Rao NN, Kornberg A (2004) Inorganic polyphosphate in Bacillus cereus: motility, biofilm formation, and sporulation. Proc Natl Acad Sci 101:17061–17065

    Article  PubMed  CAS  Google Scholar 

  • Shiba T, Tsutsumi K, Yano H, Ihara Y, Kamedaa A, Tanaka K, Takahashi H, Munekata M, Rao NN, Kornberg A (1997) Inorganic polyphosphate and the induction of rpoS expression. Proc Natl Acad Sci USA 94:11210–11215

    Article  PubMed  CAS  Google Scholar 

  • Shintani T, Uchiumi T, Yonezawa T, Salminen A, Baykov AA, Lahti R, Hachimori A (1998) Cloning and expression of a unique inorganic pyrophosphatase from Bacillus subtilis: evidence for a new family of enzymes. FEBS Lett 439:263–266

    Article  PubMed  CAS  Google Scholar 

  • Shirai M, Kakada J, Shibata K, Morshed MG, Matsushita T, Nakazawa T (2000) Accumulation of polyphosphate granules in Helicobacter pylori cells under anaerobic conditions. J Med Microbiol 49:513–519

    PubMed  CAS  Google Scholar 

  • Shively JM (1974) Inclusion bodies of prokaryotes. Annu Rev Microbiol 28:167–187

    Article  PubMed  CAS  Google Scholar 

  • Shively JM, Bryant DA, Fuller RC, Konopka AE, Stevens SE Jr, Strohl WR (1988) Functional inclusions in prokaryotic cells. Int Rev Cytol 113:35–100

    Article  PubMed  CAS  Google Scholar 

  • Skorko R (1989) Polyphosphate as a source of phosphoryl group in protein modification in the archaebacterium Sulfolobus acidocaldarius. Biochemie 71:1089–1093

    Article  CAS  Google Scholar 

  • Stumpf JD, Foster PL (2005) Polyphosphate kinase regulates error-prone replication by DNA polymerase IV in Escherichia coli. Mol Microbiol 57:751–761

    Article  PubMed  CAS  Google Scholar 

  • Tan S, Fraley CD, Zhang M, Dailidiene D, Kornberg A, Berg DE (2005) Diverse phenotypes resulting from polyphosphate kinase gene (ppk1) inactivation in different strains of Helicobacter pylori. J Bacteriol 187:7687–7695

    Article  PubMed  CAS  Google Scholar 

  • Tiensley CR, Manjula BN, Gotschlich EC (1993) Purification and characterization of polyphosphate kinase from Neisseria meningitides. Infect Immun 61:3703–3710

    Google Scholar 

  • Torres M, Goldberg J, Jensen TE (1998) Heavy metal uptake by polyphosphate bodies in living and killed cells of Plectonema boryanum (Cianophycae). Microbios 96:141–147

    PubMed  CAS  Google Scholar 

  • Van Alebeek GJWM, Kejens JT, van derDrift C (1994)Tripolyphosphatase from Methanobacterium thermoautotrophicum (strain DH). FEMSMicrobiol Lett 117:263–268

    Article  Google Scholar 

  • Vercesi AE, Moreno SNJ, Docampo R (1994) Ca2+/H+ exchange in acidic vacuoles of Trypanosoma brucei. Biochem J 304:227–233

    PubMed  CAS  Google Scholar 

  • Wiame JH (1947) Etude d’une substance polyphosphorée, basophile et m’tachromatique chez les levures. Biochim Biophys Acta 1:234–255

    Article  CAS  Google Scholar 

  • Wood HG (1977) Some reactions in which inorganic pyrophosphate replaces ATP and serves as a source of energy. Fed Proc 36:2197–2205

    PubMed  CAS  Google Scholar 

  • Young TW, Kuhn NJ, Wadeson A, Ward S, Burges D, Cooke GD (1998) Bacillus subtilis ORF yybQ encodes a manganese-dependent inorganic pyrophosphatase with distinctive properties: the first of a new class of soluble pyrophosphatase? Microbiology 144:2563–2571

    Article  PubMed  CAS  Google Scholar 

  • Zakharian E, Reusch RN (2004) Functional evidence for a supramolecular structure for the Streptomyces lividans potassium channel KcsA. Biochem Biophys Res Commun 322:1059–1065

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Ishige K, Kornberg A (2002) A polyphosphate kinase (PPK2) widely conserved in bacteria. Proc Natl Acad Sci USA 99:16678–16683

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Rao NN, Shiba T, Kornberg A (2005) Inorganic polyphosphate in the social life of Myxococcus xanthus: motility, development, and predation. Proc Natl Acad Sci USA 102:13416–13420

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Huang W, Lee SSK, Xu W (2005) Crystal structure of a polyphosphate kinase and its implications for polyphosphate synthesis. EMBO Rep 6:681–687

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Docampo, R. (2006). Acidocalcisomes and Polyphosphate Granules. In: Shively, J.M. (eds) Inclusions in Prokaryotes. Microbiology Monographs, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33774-1_3

Download citation

Publish with us

Policies and ethics