Skip to main content

R-bodies

  • Chapter

Part of the book series: Microbiology Monographs ((MICROMONO,volume 1))

Abstract

R-bodies are insoluble protein ribbons coiled in the cell into hollow cylindrical structures. They are synthesized by a few bacterial strains, including paramecia endosymbionts of the genus Caedibacter and some free-living nonsymbiotic bacteria. In C. taeniospiralis R-body synthesis is coded by plasmid pKAP, which probably evolved from a bacteriophage. In other bacteria apart from C. taeniospiralis, the synthesis of R-bodies appears to be also related to defective prophages, but cloning of the genes coding for these structures has not been reported. Caedibacter confers to the hosting paramecia the killer phenotype, a characteristic associated with the synthesis of the R-body. No physiological role has been demonstrated for R-bodies produced by nonsymbiotic bacteria.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baechler CA, Berk RS (1972) Ultrastructural observations of Pseudomonas aeruginosa: rhapidosomes. Microstructures 3:24

    Google Scholar 

  • Beier CL, Horn M, Michel R, Schweikert M, Gortz HD, Wagner M (2002) The genus Caedibacter comprises endosymbionts of Paramecium spp. related to the Rickettsiales (Alphaproteobacteria) and to Francisella tularensis (Gammaproteobacteria). Appl Environ Microbiol 68:6043–6050

    Article  PubMed  CAS  Google Scholar 

  • Bradley DE (1965) The isolation and morphology of some new bacteriophages specific for Bacillus and Acetobacter species. J Gen Microbiol 41:233–241

    PubMed  CAS  Google Scholar 

  • Casjens S (2003) Prophages and bacterial genomics: what have we learned so far? Mol Microbiol 49:277–300

    Article  PubMed  CAS  Google Scholar 

  • Clark-Walker GD (1969) Association of microcyst formation in Spirillum itersonii with the spontaneous induction of a defective bacteriophage. J Bacteriol 97:885–892

    PubMed  CAS  Google Scholar 

  • Espuny MJ, Andrés C, Mercade ME, Robert M, Manresa MA, Guinea J (1991) R-bodies in Pseudomonas aeruginosa strain 44T1. Antonie van Leeuwenhoek 55:291–296

    Google Scholar 

  • Evers MC, Murray RG (1980) The comparison of rhapidosomes and defective bacteriophage particles from Aquaspirillum intersonii. Can J Microbiol 26:1312–1319

    Article  PubMed  CAS  Google Scholar 

  • Favinger J, Stadtwald R, Gest H (1989) Rodospirillum centenum, sp. nov. a thermotolerant cyst-forming anoxygenic photosynthetic bacterium. Antonie van Leeuwenhoek 55:291–296

    Article  PubMed  CAS  Google Scholar 

  • Fusté MC, Simon-Pujol MD, Marques AM, Guinea J, Congregrado F (1986) Isolation of a new free-living bacterium containing R-bodies. J Gen Microbiol 132:2801–2805

    Google Scholar 

  • Görtz HD (2001) Intracellular bacteria in ciliates. Int Microbiol 4:143–150

    PubMed  Google Scholar 

  • Hernández-Romero D, Lucas-Elío P, López-Serrano D, Solano F, Sanchez-Amat A (2003) Marinomonas mediterranea is a lysogenic bacterium that synthesizes R-bodies. Microbiology 149:2679–2686

    Article  PubMed  CAS  Google Scholar 

  • Heruth DP, Pond FR, Dilts JA, Quackenbush RL (1994) Characterization of genetic determinants for R body synthesis and assembly in Caedibacter taeniospiralis 47 and 116. J Bacteriol 176:3559–3567

    PubMed  CAS  Google Scholar 

  • Jeblick J, Kusch J (2005) Sequence, transcription activity, and evolutionary origin of the R-body coding plasmid pKAP298 from the intracellular parasitic bacterium Caedibacter taeniospiralis. J Mol Evol 60:164–173

    Article  PubMed  CAS  Google Scholar 

  • Kanabrocki JA, Quackenbush RL, Pond FR (1986a) Organization and expression of genetic determinants for synthesis and assembly of type 51 R bodies. J Bacteriol 168:40–48

    PubMed  CAS  Google Scholar 

  • Kanabrocki JA, Lalucat J, Cox BJ, Quackenbush RL (1986b) Comparative studies of refractile (R) bodies and their genetic determinants: relationship of type 51 R bodies to R bodies produced by Pseudomonas taeniospiralis. J Bacteriol 168:1019–1022

    PubMed  CAS  Google Scholar 

  • Kusch J, Czubatinski L, Wegmann S, Hubner M, Alter M, Albrecht P (2002) Competitive advantages of Caedibacter-infected paramecia. Protist 153:47–58

    Article  PubMed  Google Scholar 

  • Lalucat J, Mayer F (1978) Spiral bodies—intracytoplasmic membraneous structures in a hydrogen oxidizing bacterium. Z Allg Mikrobiol 18:517–521

    PubMed  CAS  Google Scholar 

  • Lalucat J, Meyer O, Mayer F, Pares R, Schlegel HG (1979) R-bodies in newly isolated freeliving hydrogen-oxidizing bacteria. Arch Microbiol 121:9–15

    Article  CAS  Google Scholar 

  • Lang AS, Beatty JT (2000) Genetic analysis of a bacterial genetic exchange element: the gene transfer agent of Rhodobacter capsulatus. Proc Natl Acad Sci USA 97:859–864

    Article  PubMed  CAS  Google Scholar 

  • Lewin RA (1963) Rod-shaped particles in Saprospira grandis. Nature 198:103–104

    Article  Google Scholar 

  • Lucas-Elío P, Solano F, Sanchez-Amat A (2002) Regulation of polyphenol oxidase activites and melanin synthesis in Marinomonas mediterranea: Identification of ppoS, a gene encoding a sensor histidine kinase. Microbiology 148:2457–2466

    PubMed  Google Scholar 

  • Marrs BL (1974) Genetic recombination in Rhodopseudomonas capsulata. Proc Natl Acad Sci USA 71:971–973

    Article  PubMed  CAS  Google Scholar 

  • Morrall S, Greenwood AD (1980) A comparison of the periodic substructure of the trichocysts of the Cryptophyceae and Prasinophyceae. Biosystems 12:71–83

    Article  PubMed  CAS  Google Scholar 

  • Nakayama K, Takashima K, Ishihara H, Shinomiya T, Kageyama M, Kanaya S, Ohnishi M, Murata T, Mori H, Hayashi T (2000) The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage. Mol Microbiol 38:213–231

    Article  PubMed  CAS  Google Scholar 

  • Pate JL, Johnson JL, Ordal EJ (1967) The fine structure of Chondrococcus columnaris: II. Structure and formation of rhapidosomes. J Cell Biol 35:15–35

    Article  PubMed  CAS  Google Scholar 

  • Pazirandeh M, Campbell JR (1993) Protein composition of rhapidosomes isolated from Aquaspirillum itersonii. J Gen Microbiol 139:859–864

    PubMed  CAS  Google Scholar 

  • Petroni G, Spring S, Schleifer KH, Verni F, Rosati G (2000) Defensive extrusive ectosymbionts of Euplotidium (Ciliophora) that contain microtubule-like structures are bacteria related to Verrucomicrobia. Proc Nat Acad Sci USA 97:1813–1817

    Article  PubMed  CAS  Google Scholar 

  • Pond FR, Gibson I, Lalucat J, Quackenbush RL (1989) R-body-producing bacteria. Microb Rev 53:25–67

    CAS  Google Scholar 

  • Preer JR Jr, Preer LB (1967) Virus-like bodies in killer paramecia. Proc Natl Acad Sci USA 58:1774–1781

    Article  PubMed  Google Scholar 

  • Preer JR Jr, Stark P (1953) Cytological observations on the cytoplasmic factor kappa in Paramecium aurelia. Exp Cell Res 5:478–491

    Article  PubMed  CAS  Google Scholar 

  • Preer JR Jr, Preer LB (1984) Endosymbionts of protozoa. In: Kreig N, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1. Williams and Wilkins, Baltimore, pp 795–813

    Google Scholar 

  • Preer JR Jr, Preer LB, Rudman B, Jurand A (1971) Isolation and composition of bacteriophage-like particles from kappa of killer paramecia. Mol Gen Genet 111:202–208

    Article  PubMed  CAS  Google Scholar 

  • Preer JR Jr, Preer LB, Jurand A (1974) Kappa and other endosymbionts in Paramecium aurelia. Bacteriol Rev 38:113–163

    PubMed  CAS  Google Scholar 

  • Quackenbush RL, Burbach JA (1983) Cloning and expression of DNA sequences associated with the killer trait of Paramecium tetraurelia stock 47. Proc Natl Acad Sci USA 80:250–254

    Article  PubMed  CAS  Google Scholar 

  • Quackenbush RL, Dilts JA, Cox BJ (1986) Transposonlike elements in Caedibacter taeniospiralis. J Bacteriol 166:349–352

    PubMed  CAS  Google Scholar 

  • Rosati G, Petroni G, Quochi S, Modeo L, Verni F (1999) Epixenosomes: Peculiar epibionts of the hypotrich ciliate Euplotidium itoi defend their host against predators. J Eukaryot Microbiol 46:272–282

    Google Scholar 

  • Schmidt HJ, Görtz HD, Pond FR, Quackenbush RL (1988) Characterization of Caedibacter endonucleobionts from the macronucleus of Paramecium caudatum and the identification of a mutant with blocked R-body synthesis. Exp Cell Res 174:49–57

    Article  PubMed  CAS  Google Scholar 

  • Ueda M, Takeya A (1972) Rhapidosomes in Clostridium botulinum. J Gen ApplMicrobiol 18:81–98

    CAS  Google Scholar 

  • Wells B, Horne RW (1983) The ultrastructure of Pseudomonas avenae. II. Intracellular refractile (R-body) structure. Micron Microsc Acta 14:329–344

    Article  Google Scholar 

  • Willems A, Goor M, Thielemans S, Gillis M, Kersters K, De Ley J (1992) Transfer of several phytopathogenic Pseudomonas species to Acidovorax as Acidovorax avenae subsp. avenae subsp. nov., comb. nov., Acidovorax avenae subsp. citrulli, Acidovorax avenae subsp. cattleyae, and Acidovorax konjaci. Int J Syst Evol Microbiol 42:107–119

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sanchez-Amat, A. (2006). R-bodies. In: Shively, J.M. (eds) Inclusions in Prokaryotes. Microbiology Monographs, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33774-1_14

Download citation

Publish with us

Policies and ethics