Skip to main content

Nonconstant Monochromatic Solutions to Systems of Linear Equations

  • Conference paper
Topics in Discrete Mathematics

Part of the book series: Algorithms and Combinatorics ((AC,volume 26))

Abstract

The systems of linear equations (homogeneous or inhomogeneous) that are partition regular, over ℕ or ℤ or ℚ, were characterized by Rado. Our aim here is to characterize those systems for which we can guarantee a nonconstant, or injective, solution. It turns out that we thereby recover an equivalence between ℕ and ℤ that is normally lost when one passes from homogeneous to inhomogeneous systems.

This author acknowledges support received from the National Science Foundation (USA) via grant DMS-0243586.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Bergelson, W. Deuber, N. Hindman, and H. Lefmann, Rado’s Theorem for commutative rings, J. Comb. Theory (Series A) 66 (1994), 68–92.

    Article  MATH  MathSciNet  Google Scholar 

  2. W. Deuber, Partitionen und lineare Gleichungssysteme, Math. Zeit. 133 (1973), 109–123.

    Article  MATH  MathSciNet  Google Scholar 

  3. W. Deuber, Developments based on Rado’s dissertation’ studien zur Kombinatorik’, in Surveys in Combinatorics, 1989, (Siemons, J., ed.), Cambridge University Press (1989), pp. 52–74.

    Google Scholar 

  4. R. Graham, B. Rothschild, and J. Spencer, Ramsey Theory, Wiley, New York, 1990.

    MATH  Google Scholar 

  5. N. Hindman, I. Leader, and D. Strauss, Image partition regular matrices — bounded solutions and preservation of largeness, Discrete Math. 242 (2002), 115–144.

    Article  MATH  MathSciNet  Google Scholar 

  6. N. Hindman and D. Strauss, Algebra in the Stone-Čech compactification: theory and applications, de Gruyter, Berlin, 1998.

    Google Scholar 

  7. R. Rado, Studien zur Kombinatorik, Math. Zeit. 36 (1933), 242–280.

    Article  MathSciNet  Google Scholar 

  8. R. Rado, Note on combinatorial analysis, Proc. London Math. Soc. 48 (1943), 122–160.

    Article  MATH  MathSciNet  Google Scholar 

  9. I. Schur, Über die Kongruenz x m + y m = z m(mod p), Jahresbericht der Deutschen Math.-Verein. 25 (1916), 114–117.

    Google Scholar 

  10. B. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw Arch. Wiskunde 19 (1927), 212–216.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hindman, N., Leader, I. (2006). Nonconstant Monochromatic Solutions to Systems of Linear Equations. In: Klazar, M., Kratochvíl, J., Loebl, M., Matoušek, J., Valtr, P., Thomas, R. (eds) Topics in Discrete Mathematics. Algorithms and Combinatorics, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33700-8_9

Download citation

Publish with us

Policies and ethics