Skip to main content

Efficient Preconditioners for Special Situations in Finite Element Computations

  • Conference paper
Parallel Algorithms and Cluster Computing

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 52))

Abstract

From the very efficient use of hierarchical techniques for the quick solution of finite element equations in case of linear elements, we discuss the generalization of these preconditioners to higher order elements and to the problem of crack growth, where the introduction to of the crack opening would destroy existing mesh hierarchies. In the first part of this paper, we deal with the higher order elements. Here, especially elements based on cubic polynomials require more complicate tasks such as the definition of ficticious spaces and the Ficticious Space Lemma. A numerical example demonstrates that iteration numbers similar to the linear case are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. E. Bänsch: Local mesh refinement in 2 and 3 dimensions. IMPACT of Computing in Science and Engineering 3, pp. 181–191, 1991.

    Google Scholar 

  2. 2. J. H. Bramble, J. E. Pasciak, A. H. Schatz, “The Construction of Preconditioners for Elliptic Problems by Substructuring” I — IV, Mathematics of Computation, 47:103–134,1986, 49:1–16,1987, 51:415–430,1988, 53:1–24,1989.

    Article  MATH  MathSciNet  Google Scholar 

  3. 3. I. H. Bramble, J. E. Pasciak, J. Xu, Parallel Multilevel Preconditioners, Math. Comp., 55:1–22,1990.

    Article  MATH  MathSciNet  Google Scholar 

  4. 4. G. Haase, U. Langer, A. Meyer, The Approximate Dirichlet Domain Decomposition Method, Part I: An Algebraic Approach, Part II: Application to 2nd-order Elliptic B.V.Pfis, Computing, 47:137–151/153–167,1991.

    Article  MATH  MathSciNet  Google Scholar 

  5. 5. G. Haase, U. Langer, A. Meyer, Domain Decomposition Preconditioners with Inexact Subdomain Solvers, J. Num. Lin. Alg. with Appl., 1:27–42,1992.

    MathSciNet  Google Scholar 

  6. 6. G. Haase, U. Langer, A. Meyer, S.V. Nepommnyaschikh, Hierarchical Extension Operators and Local Multigrid Methods in Domain Decomposition Preconditioners, East-West J. Numer. Math., 2:173–193,1994.

    MATH  MathSciNet  Google Scholar 

  7. 7. A. Meyer, A Parallel Preconditioned Conjugate Gradient Method Using Domain Decomposition and Inexact Solvers on Each Subdomain, Computing, 45:217–234,1990.

    Article  MATH  MathSciNet  Google Scholar 

  8. 8. A. Meyer, F.Rabold, M.Scherzer: Efficient Finite Element Simulation of Crack Propagation Using Adaptive Iterative Solvers, Commun.Numer.Meth.Engng., 22,93–108, 2006. Preprint-Reihe des Chemnitzer Sonderforschungsbereiches 393, Nr.: 04–01, TU Chemnitz, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  9. 9. S.V. Nepommnyaschikh, Ficticious components and subdomain alternating methods, Sov.J.Numer.Anal.Math.Model., 5:53–68,1991.

    Google Scholar 

  10. 10. Rolf Rannacher and Franz-Theo Suttmeier: A feed-back approach to error control in finite element methods: Application to linear elasticity. Reaktive Strömungen, Diffusion und Transport SFB 359, Interdiziplinäres Zentrum für Wissenschaftliches Rechnen der Universität Heidelberg, 1996.

    Google Scholar 

  11. 11. P.Oswald, Multilevel Finite Element Approximation: Theory and Applications, Teubner Skripten zur Numerik, B.G.Teubner Stuttgart 1994.

    MATH  Google Scholar 

  12. 12. M. Scherzer and A. Meyer: Zur Berechnung von Spannungs- und Deformationsfeldern an Interface-Ecken im nichtlinearen Deformationsbereich auf Parallelrechnern. Preprint-Reihe des Chemnitzer Sonderforschungsbereiches 393, Nr.: 96–03, TU Chemnitz, 1996.

    Google Scholar 

  13. 13. M.Thess, Parallel Multilevel Preconditioners for Thin Smooth Shell Finite Element Analysis, Num.Lin.Alg.with Appl., 5:5,401–440,1998.

    Article  MATH  MathSciNet  Google Scholar 

  14. 14. M.Thess, Parallel Multilevel Preconditioners for Thin Smooth Shell Problems, Diss.A, TU Chemnitz,1998.

    Google Scholar 

  15. 15. P. Wriggers: Nichtlineare Finite-Element-Methoden. Springer, Berlin, 2001.

    MATH  Google Scholar 

  16. 16. H. Yserentant, Two Preconditioners Based on the Multilevel Splitting of Finite Element Spaces, Numer. Math., 58:163–184,1990.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Meyer, A. (2006). Efficient Preconditioners for Special Situations in Finite Element Computations. In: Hoffmann, K.H., Meyer, A. (eds) Parallel Algorithms and Cluster Computing. Lecture Notes in Computational Science and Engineering, vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33541-2_5

Download citation

Publish with us

Policies and ethics