A Performance Analysis of ABINIT on a Cluster System

  • Torsten Hoefler
  • Rebecca Janisch
  • Wolfgang Rehm
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 52)


In solid state physics, bonding and electronic structure of a material can be investigated by solving the quantum mechanical (time-independent) Schrödinger equation


Cluster System Call Graph Barrier Synchronization Fortran Compiler Application Runtime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    1. M. Born and J.R. Oppenheimer. Zur Quantentheorie der Molekeln. Ann. Physik, 84:457, 1927.CrossRefGoogle Scholar
  2. 2.
    2. P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864, 1964.CrossRefMathSciNetGoogle Scholar
  3. 3.
    3. W. Kohn and L.J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev, 140:A1133, 1965.CrossRefMathSciNetGoogle Scholar
  4. 4.
    4. R. M. Martin. Electronic Structure. Cambridge University Press, Cambridge, UK, 2004.Google Scholar
  5. 5.
    5. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos. Iterative minimization techniques for ab initio total-energy calculations — molecular dynamics and conjugate gradients. Rev. Mod. Phys., 64:1045, 1992.CrossRefGoogle Scholar
  6. 6.
    6. J. Nocedal. Theory of algorithms for unconstrained optimization. Acta Num., page 199, 1991.Google Scholar
  7. 7.
    7. X. Gonze, G.-M. Rignanese, M. Verstraete, J.-M. Beuken, Y. Pouillon, R. Caracas, F. Jollet, M. Torrent, G. Zerah, M. Mikami, P. Ghosez, M. Veithen, J.-Y. Raty, V. Olevano, F. Bruneval, L. Reining, R. Godby, G. Onida, D.R. Hamann, and D.C. Allan. A brief introduction to the ABINIT software package. Z. Kristallogr., 220:558, 2005.CrossRefGoogle Scholar
  8. 8.
    8. Scholar
  9. 9.
    9. V. Eyert. A comparative study on methods for convergence acceleration of iterative vector sequences. J.Comp.Phys., 124:271, 1995.CrossRefMathSciNetGoogle Scholar
  10. 10.
    10. X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M.Verstraete, G. Zerah, F. Jollet, M.Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty, and D.C. Allan. First-principles computation of material properties: the ABINIT software project. Comp. Mat. Sci., 25:478, 2002.CrossRefGoogle Scholar
  11. 11.
    11. A.D. Malony, V. Mertsiotakis, and A. Quick. Automatic scalability analysis of parallel programs based on modeling techniques. In Proceedings of the 7th international conference on Computer performance evaluation : modelling techniques and tools, pages 139–158, Secaucus, NJ, USA, 1994. Springer-Verlag New York, Inc.Google Scholar
  12. 12.
    12. R.J. Block, S. Sarukkai, and P. Mehra. Automated performance prediction of message-passing parallel programs. In Proceedings of the 1995 ACM/IEEE conference on Supercomputing, 1995.Google Scholar
  13. 13.
    13. M. Courson, A. Mink, G. Marcais, and B. Traverse. An automated benchmarking toolset. In HPCN Europe, pages 497–506, 2000.Google Scholar
  14. 14.
    14. X. Cai, A. M. Bruaset, H. P. Langtangen, G. T. Lines, K. Samuelsson, W. Shen, A. Tveito, and G. Zumbusch. Performance modeling of pde solvers. In H. P. Langtangen and A. Tveito, editors, Advanced Topics in Computational Partial Differential Equations, volume 33 of Lecture Notes in Computational Science and Engineering, chapter 9, pages 361–400. Springer, Berlin, Germany, 2003.Google Scholar
  15. 15.
    15. A. Grama, A. Gupta, E. Han, and V. Kumar. Parallel algorithm scalability issues in petaflops architectures, 2000.Google Scholar
  16. 16.
    16. G. Luecke, B. Raffin, and J. Coyle. Comparing the communication performance and scalability of a linux and an nt cluster of pcs.Google Scholar
  17. 17.
    17. W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable implementation of the mpi message passing interface standard. Parallel Comput., 22(6):789–828, 1996.zbMATHCrossRefGoogle Scholar
  18. 18.
    18. H.J. Monkhorst and J.D. Pack. Special points for brillouin-zone integrations. Phys. Rev. B, 13:5188, 1976.CrossRefMathSciNetGoogle Scholar
  19. 19.
    19. O. Zaki, E. Lusk, W. Gropp, and D. Swider. Toward scalable performance visualization with Jumpshot. The International Journal of High Performance Computing Applications, 13(3):277–288, Fall 1999.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Torsten Hoefler
    • 1
  • Rebecca Janisch
    • 2
  • Wolfgang Rehm
    • 1
  1. 1.Fakultät für InformatikTechnische Universität ChemnitzChemnitzGermany
  2. 2.Fakultät für Elektrotechnik und InformationstechnikTechnische Universität ChemnitzsChemnitzGermany

Personalised recommendations