Skip to main content

Amorphisation at Heterophase Interfaces

  • Conference paper
Parallel Algorithms and Cluster Computing

Abstract

Heterophase interfaces are boundaries, which join two material types with different physical and chemical nature. Therefore, heterophase interfaces can exhibit a large variety of geometric morphologies ranging from atomically sharp boundaries to gradient materials, in which an interface-specific phase is formed, which provides a continuous change of the structural parameters and thus reduces elastic strains and deformations. In addition, also the electronic properties of the two materials may be different, e.g. at boundaries between an electronically conducting metal and a semiconductor or an insulating material. Due to the deviations in the electronic structure, various bonding mechanisms are observed, which span the range from weakly interacting systems to boundaries with strong, directed bonding and further to reactively bonding systems which exhibit a new phase at the interface. Thus, both elastic and electronic factors may contribute to the formation of a new, often amorphous phase at the interface. Numerical simulations based on electronic structure theory are an efficient tool to distinguish and quantify these different influence factors, and massively parallel computers nowadays provide the required numerical power to tackle structurally more demanding systems. Here, this power has been exploited by the parallelisation over an optimised set of integration points, which split the solution of the Kohn-Sham equations into a set of matrix equations with equal matrix sizes. In this way, the analysis and prediction of material properties at the nanoscale has become feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. R.C. Longo, V.S. Stepanyuk, W. Hegert, A. Vega, L.J. Gallego, J. Kirschner. Interface intermixing in metal heteroepitaxy on the atomic scale. Phys. Rev. B, 69:073406, 2004.

    Article  Google Scholar 

  2. 2. J.E. Houston, J.M. White, P.J. Feibelman, D.R. Hamann. Interface-state properties for strained-layer Ni adsorbed on Ru(0001). Phys. Rev. B, 38:12164, 1988.

    Article  Google Scholar 

  3. 3. R.E. Watson, M. Weinert, J.W. Davenport. Structural stabilities of layered materials: Pt-Ta. Phys. Rev. B, 35:9284, 1987.

    Article  Google Scholar 

  4. 4. H.R. Gong, B.X. Liu. Interface stability and solid-state amorphization in an immiscible Cu-Ta system. Appl. Phys. Lett., 83:4515, 2003.

    Article  Google Scholar 

  5. 5. S. Narasimham. Stress, strain, and charge transfer in Ag/Pt(111): A test of continuum elasticity theory. Phys. Rev. B, 69:045425, 2004.

    Article  Google Scholar 

  6. 6. S. Gemming, M. Schreiber. Nanoalloying in mixed AgmAun nanowires. Z. Metallkd., 94:238, 2003.

    Google Scholar 

  7. 7. S. Gemming, G. Seifert, M. Schreiber. Density functional investigation of goldcoated metallic nanowires. Phys. Rev. B, 69:245410, 2004.

    Article  Google Scholar 

  8. 8. S. Gemming, M. Schreiber. Density-functional investigation of alloyed metallic nanowires. Comp. Phys. Commun., 169:57, 2005.

    Article  Google Scholar 

  9. 9. P.J. Lin-Chung, T.L. Reinecke. Antisite defect in GaAs and at the GaAs-AlAs interface. J. Vac. Sci. Technol., 19:443, 1981.

    Article  Google Scholar 

  10. 10. S. Das Sarma, A. Madhukar. Ideal vacancy induced band gap levels in lattice matched thin superlattices: The GaAs-AlAs(100) and GaSb-InAs(100) systems. J. Vac. Sci. Technol., 19:447, 1981.

    Article  Google Scholar 

  11. 11. Y. Wei, M. Razeghi. Modeling of type-II InAs/GaSb superlattices using an empirical tight-binding method and interface engineering. Phys. Rev. B, 69:085316, 2004.

    Article  Google Scholar 

  12. 12. A. Kley, J. Neugebauer. Atomic and electronic structure of the GaAs/ZnSe(001) interface. Phys. Rev. B, 50:8616, 1994.

    Article  Google Scholar 

  13. 13. W.R.L. Lambrecht, B. Segall. Electronic structure and bonding at SiC/AlN and SiC/BP interfaces. Phys. Rev. B, 43:7070, 1991.

    Article  Google Scholar 

  14. 14. L. Pizzagalli, G. Cicero, A. Catellani. Theoretical investigations of a highly mismatched interface: SiC/Si(001). Phys. Rev. B, 68:195302, 2003.

    Article  Google Scholar 

  15. 15. P. Cásek, S. Bouette-Russo, F. Finocchi, C. Noguera. SrTiO3(001) thin .lms on MgO(001): A theoretical study. Phys. Rev. B, 69:085411, 2004.

    Article  Google Scholar 

  16. 16. R.R. Das, Y.I. Yuzyuk, P. Bhattacharya, V. Gupta, R.S. Katiyar. Folded acoustic phonons and soft mode dynamics in BaTiO3/SrTiO3 superlattices. Phys. Rev. B, 69:132301, 2004.

    Article  Google Scholar 

  17. 17. S. Hutt, S. Köstlmeier, C. Elsässer. Density functional study of the Σ3/(111) grain boundary in strontium titanate. J. Phys.: Condens. Matter, 13:3949, 2001.

    Article  Google Scholar 

  18. 18. S. Gemming, M. Schreiber. Impurity and vacancy clustering at the Σ3(111)[1–10] grain boundary in strontium titanate. Chem. Phys., 309:3, 2005.

    Article  Google Scholar 

  19. 19. M. Sternberg, W.R.L. Lambrecht, T. Frauenheim. Molecular-dynamics study of diamond/silicon (001) interfaces with and without graphitic interface layers. Phys. Rev. B, 56:1568, 1997.

    Article  Google Scholar 

  20. 20. T. Sakurai, T. Sugano. Theory of continuously distributed trap states at Si-SiO2 interfaces. J. Appl. Phys., 52:2889, 1981.

    Article  Google Scholar 

  21. 21. D. Chen, X.L. Ma, Y.M. Wang, L. Chen. Electronic properties and bonding con.guration at theTiN/MgO(001) interface. Phys. Rev. B, 69:155401, 2004.

    Article  Google Scholar 

  22. 22. R. Puthenkovilakam, E.A. Carter, J.P. Chang. First-principles exploration of alternative gate dielectrics: Electronic structure of ZrO2/Si and ZrSiO4/Si interfaces. Phys. Rev. B, 69:155329, 2004.

    Article  Google Scholar 

  23. 23. M. Rühle, A.G. Evans. High toughness ceramics and ceramic composites. Progr. Mat. Sci., 33:85, 1989.

    Article  Google Scholar 

  24. 24. G. Willmann, N. Schikora, R.P. Pitto. Retrieval of ceramic wear couples in total hip arthroplasty. Bioceram., 15:813, 1994.

    Google Scholar 

  25. 25. A.M. Freborg, B.L. Ferguson, W.J. Brindley, G.J. Petrus. Modeling oxidation induced stresses in thermal barrier coatings. Mater. Sci. Eng. A, 245:182, 1998.

    Article  Google Scholar 

  26. 26. R. Benedek, M. Minko., L.H. Yang. Adhesive energy and charge transfer for MgO/Cu heterophase interfaces. Phys. Rev. B, 54:7697, 1996.

    Article  Google Scholar 

  27. 27. A. Hors.eld, H. Fujitani. Density-functional study of the initial stage of the anneal of a thin Co .lm on Si. Phys. Rev. B, 63:235303, 2001.

    Article  Google Scholar 

  28. 28. B.D. Yu, Y. Miyamoto, O. Sugino, A. Sakai, T. Sasaki, T. Ohno. Structural and electronic properties of metal-silicide/silicon interfaces: A .rst-principles study. J. Vac. Sci. Technol. B, 19:1180, 2001.

    Article  Google Scholar 

  29. 29. B.S. Kang, S.K. Oh, H.J. Kang, K.S. Sohn. Energetics of ultrathin CoSi2 .lm on a Si(001) surface. J. Phys.: Condens. Matter, 15:67, 2003.

    Article  Google Scholar 

  30. 30. C. Rogero, C. Koitzsch, M.E. Gonzalez, P. Aebi, J. Cerda, J.A. Martin-Glago. Electronic structure and Fermi surface of two-dimensional rare-earth silicides epitaxially grown on Si(111). Phys. Rev. B, 69:045312, 2004.

    Article  Google Scholar 

  31. 31. C.R. Ashman, C.J. Först, K. Schwarz, P.E. Blöchl. First-principles calculations of strontium on Si(001). Phys. Rev. B, 69:075309, 2004.

    Article  Google Scholar 

  32. 32. S. Walter, F. Blobner, M. Krause, S. Muller, K. Heinz, U. Starke. Interface structure and stabilization of metastable B2-FeSi/Si(111) studied with lowenergy electron di.raction and density functional theory. J. Phys.: Condens. Matter, 15:5207, 2003.

    Article  Google Scholar 

  33. 33. U. Schoenberger, O.K. Andersen, M. Methfessel. Bonding at metal ceramic interfaces - Ab-initio density-functional calculations for Ti and Ag on MgO. Acta Metall. Mater., 40:S1, 1992.

    Article  Google Scholar 

  34. 34. K. Kruse, M.W. Finnis, J.S. Lin, M.C. Payne, V.Y. Milman, A. DeVita, M.J. Gillan. First-principles study of the atomistic and electronic structure of the niobium-α-alumina(0001) interface. Phil. Mag. Lett., 73:377, 1996.

    Article  Google Scholar 

  35. 35. Y. Ikuhara, Y. Sugawara, I. Tanaka, P. Pirouz. Atomic and electronic structure of V/MgO interface. Interface Science, 5:5, 1997.

    Article  Google Scholar 

  36. 36. R. Schweinfest, S. Köstlmeier, F. Ernst, C. Elsässer, T. Wagner, M.W. Finnis. Atomistic and electronic structure of Al/MgAl2O4 and Ag/MgAl2O4 interfaces. Phil. Mag. A, 81:927, 2000.

    Article  Google Scholar 

  37. 37. S. Köstlmeier, C. Elsässer. Ab-initio investigation of metal-ceramic bonding. M(001)/MgAl2O4, M=Al, Ag. Interface Science, 8:41, 2000.

    Article  Google Scholar 

  38. 38. S. Köstlmeier, C. Elsässer, B. Meyer, M.W. Finnis. Ab initio study of electronic and geometric structures of metal/ceramic heterophase boundaries. Mat. Res. Soc. Symp. Proc., 492:97, 1998.

    Google Scholar 

  39. 39. S. Köstlmeier, C. Elsässer, B. Meyer, M.W. Finnis. A density-functional study of interactions at the metal-ceramic interfaces Al/MgAl2O4 and Ag/MgAl2O4. phys. stat. sol. (a), 166:417, 1998.

    Article  Google Scholar 

  40. 40. S. Köstlmeier, C. Elsässer. Density functional study of the “titanium effect” at metal/ceramic interfaces. J. Phys.: Condens. Matter, 12:1209, 2000.

    Article  Google Scholar 

  41. 41. C. Elsässer, S. Köstlmeier-Gemming. Oxidative corrosion of adhesive interlayers. Phys. Chem. Chem. Phys., 3:5140, 2001.

    Google Scholar 

  42. 42. S. Köstlmeier, C. Elsässer. Oxidative corrosion of adhesive interlayers. Mat. Res. Soc. Symp. Proc., 586:M3.1, 1999.

    Google Scholar 

  43. 43. V. Vitek, G. Gutekunst, J. Mayer, M. Rühle. Atomic structure of misfit dislocations in metal-ceramic interfaces. Phil. Mag. A, 71:1219, 1996.

    Google Scholar 

  44. 44. J.-H. Cho, K.S. Kim, C.T. Chan, Z. Zhang. Oscillatory energetics of .at Ag .lms on MgO(001). Phys. Rev. B, 63:113408, 2001.

    Article  Google Scholar 

  45. 45. C. Klein, G. Kresse, S. Surnev, F.P. Netzer, M. Schmidt, P. Varga. Vanadium surface oxides on Pd(111): A structural analysis. Phys. Rev. B, 68:235416, 2003.

    Article  Google Scholar 

  46. 46. A. Trampert, F. Ernst, C.P. Flynn, H.F. Fischmeister and M. Rühle. Highresolution transmission electron microscopy studies of the Ag/MgO interface. Acta Metall. Mater., 40:S227, 1992.

    Article  Google Scholar 

  47. 47. A.M. Stoneham, P.W. Tasker. Metal non-metal and other interfaces — The role of image interactions. J. Phys. C, 18:L543, 1985.

    Article  Google Scholar 

  48. 48. D.M. Duffy, J.H. Harding, A.M. Stoneham. Atomistic modeling of the metaloxide interface with image interactions. Acta Metall. Mater., 40:S11, 1992.

    Article  Google Scholar 

  49. 49. D.M. Duffy, J.H. Harding, A.M. Stoneham. Atomistic modeling of metal-oxide interfaces with image interactions. Phil. Mag. A, 67:865, 1993.

    Google Scholar 

  50. 50. M.W. Finnis. Metal ceramic cohesion and the image interaction. Acta Metall. Mater., 40:S25, 1992.

    Article  Google Scholar 

  51. 51. A.M. Stoneham, P.W. Tasker. Image charges and their in.uence on the growth and the nature of thin oxide-.lms. Phil. Mag. B, 55:237, 1987.

    Google Scholar 

  52. 52. D.A. Muller, D.A. Shashkov, R. Benedek, L.H. Yang, J. Silcox, D.N. Seidman. Adhesive energy and charge transfer for MgO/Cu heterophase interfaces. Phys. Rev. Lett., 80:4741, 1998.

    Article  Google Scholar 

  53. 53. T. Ochs, S. Köstlmeier, C. Elsässer. Microscopic structure and bonding at the Pd/SrTiO3(001) interface. Integr. Ferroelectr., 30:251, 2001.

    Google Scholar 

  54. 54. A. Zaoui. Energetic stabilities and the bonding mechanism of ZnO(0001)/Pd(111) interfaces. Phys. Rev. B, 69:115403, 2004.

    Article  Google Scholar 

  55. 55. M. Christensen, S. Dudiy, G. Wahnström. First-principles simulation of metalceramic interface adhesion: Cu/WC versus Cu/TiC. Phys. Rev. B, 65:045408, 2002.

    Article  Google Scholar 

  56. 56. M. Christensen, G. Wahnström. Co-phase penetration of WC(10–10)/ WC(10–10) grain boundaries from .rst principles. Phys. Rev. B, 67:115415, 2003.

    Article  Google Scholar 

  57. 57. J. Hartford. Interface energy and electron structure for Fe/VN. Phys. Rev. B, 61:2221, 2000.

    Article  Google Scholar 

  58. 58. E. Saiz, A.P. Tomsia, R.M. Cannon. Ridging effects on wetting and spreading of liquids on solids. Acta Mater., 46:2349, 1998.

    Article  Google Scholar 

  59. 59. J.A. Venables, G.D.T. Spiller, M. Hanbucken. Nucleation and growth of thin .lms. Rep. Prog. Phys., 47:399, 1984.

    Article  Google Scholar 

  60. 60. A.M. Stoneham, J.H. Harding. Not too big, not too small: The appropriate scale. Nature Materials, 2:65, 2003.

    Article  Google Scholar 

  61. 61. M.W. Finnis. Interatomic Forces in Condensed Matter. Oxford University Press, Oxford, 2003.

    Google Scholar 

  62. 62. R.O. Jones, O. Gunnarsson. Density-functional theory. Rev. Mod. Phys., 61:689, 1989.

    Article  Google Scholar 

  63. 63. H. Eschrig. The Fundamentals of Density Functional Theory. Edition am Gutenbergplatz, Leipzig, 2003.

    MATH  Google Scholar 

  64. 64. G. Onida, L. Reining, A. Rubio. Electronic excitations: density-functional versus many-body Green's-function approaches. Rev. Mod. Phys., 74:601, 2002.

    Article  Google Scholar 

  65. 65. R.M. Dreizsler, E.K.U. Gross. Density Functional Theory. Springer, Berlin, 1990.

    Google Scholar 

  66. 66. R.G. Parr, W. Yang. Density-Functional Theory of Atoms and Molecules. Oxford University Press, New York, 1989.

    Google Scholar 

  67. 67. P. Hohenberg, W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864, 1964.

    Article  MathSciNet  Google Scholar 

  68. 68. M. Levy. Electron densities in search of Hamiltonians. Phys. Rev. A, 26:1200, 1982.

    Article  Google Scholar 

  69. 69. U. von Barth, L. Hedin. The energy density functional formalism for excited states. J. Phys. C, 5:1629, 1972.

    Article  Google Scholar 

  70. 70. N.D. Mermin. Thermal properties of the inhomogeneous electron gas. Phys. Rev., 137:A1441, 1965.

    Article  MathSciNet  Google Scholar 

  71. 71. S.H. Vosko, L. Wilk, M. Nusair. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58:1200, 1980.

    Article  Google Scholar 

  72. 72. O. Gunnarsson, M. Jonson, B.I. Lundqvist. Descriptions of exchange and correlation effects in inhomogeneous electron systems. Phys. Rev. B, 20:3136, 1979.

    Article  Google Scholar 

  73. 73. J.-M. Jancu, R. Scholz, F. Beltram, F. Bassani. Empirical spds tight-binding calculation for cubic semiconductors: General method and material parameters. Phys. Rev. B, 57:6493, 1998.

    Article  Google Scholar 

  74. 74. R. Scholz, J.-M. Jancu, F. Bassani. Superlattice calculation in an empirical spds* tight-binding model. Mat. Res. Soc. Symp. Proc., 491:383, 1998.

    Google Scholar 

  75. 75. A. Di Carlo. Time-dependent density-functional-based tight-binding. Mat. Res. Soc. Symp. Proc., 491:391, 1998.

    Google Scholar 

  76. 76. C.Z. Wang, K.M. Ho, C.T. Chan. Tight-binding molecular-dynamics study of amorphous carbon. Phys. Rev. Lett., 70:611, 1993.

    Article  Google Scholar 

  77. 77. P. Ordejón, D. Lebedenko, M. Menon. Improved nonorthogonal tight-binding Hamiltonian for molecular-dynamics simulations of silicon clusters. Phys. Rev. B, 50:5645, 1994.

    Article  Google Scholar 

  78. 78. M. Menon, K.R. Subbaswamy. Nonorthogonal tight-binding moleculardynamics scheme for silicon with improved transferability. Phys. Rev. B, 55:9231, 1997.

    Article  Google Scholar 

  79. 79. C.M. Goringe, D.R. Bowler, E. Hernandez. Tight-binding modelling of materials. Rep. Prog. Phys., 60:1447, 1997.

    Article  Google Scholar 

  80. 80. A. Di Carlo, M. Gheorghe, P. Lugli, M. Sternberg, G. Seifert, T. Frauenheim. Theoretical tools for transport in molecular nanostructures. Physica B, 314:86, 2002.

    Article  Google Scholar 

  81. 81. R. Car, M. Parrinello. Unified approach for molecular dynamics and densityfunctional theory. Phys. Rev. Lett., 55:2471, 1985.

    Article  Google Scholar 

  82. 82. D. R. Hamann, M. Schlüter, C. Chiang. Norm-conserving pseudopotentials. Phys. Rev. Lett., 43:1494, 1979.

    Article  Google Scholar 

  83. 83. G.B. Bachelet, D.R. Hamann, M. Schlüter. Pseudopotentials that work: From H to Pu. Phys. Rev. B, 26:4199, 1082.

    Article  Google Scholar 

  84. 84. J. Moreno, J.M. Soler. Optimal meshes für integrals in real- and reciprocal-space unit cells. Phys. Rev. B, 45:13891, 1992.

    Article  Google Scholar 

  85. 85. R. Schweinfest, Th. Wagner, F. Ernst. Annual Report to the VW Foundation on the Project Progress. Stuttgart, 1997.

    Google Scholar 

  86. 86. R. Stadler, D. Vogtenhuber, R. Podloucky. Ab initio study of the CoSi2(111)/Si(111) interface. Phys. Rev. B, 60:17112, 1999.

    Article  Google Scholar 

  87. 87. R. Stadler, R. Podloucky. Ab initio studies of the CuSi2(100)/Si(100) interface. Phys. Rev. B, 62:2209, 2000.

    Article  Google Scholar 

  88. 88. H. Fujitani. First-principles study of the stability of the NiSi2/Si(111) interface. Phys. Rev. B, 57:8801, 1998.

    Article  Google Scholar 

  89. 89. B. Chenevier, O. Chaix-Pluchery, P. Gergaud, O. Thomas, F. La Via. Thermal expansion and stress development in the .rst stages of silicidation in Ti/Si thin .lms. J. Appl. Phys., 94:7083, 2003.

    Article  Google Scholar 

  90. 90. G. Kuri, Th. Schmidt, V. Hagen, G. Materlik, R. Wiesendanger, J. Falta. Subsurface interstitials as promoters of three-dimensional growth of Ti on Si(111): An x-ray standing wave, x-ray photoelectron spectroscopy, and atomic force microscopy investigation. J. Vac. Sci. Technol. A, 20:1997, 2002.

    Article  Google Scholar 

  91. 91. J.M. Yang, J.C. Park, D.G. Park, K.Y. Lim, S.Y. Lee, S.W. Park, Y.J. Kim. Epitaxial C49-TiSi2 phase formation on the silicon (100). J. Appl. Phys., 94:4198, 2003.

    Article  Google Scholar 

  92. 92. O.A. Fouad, M. Yamazato, H. Ichinose, M. Nagano. Titanium disilicide formation by rf plasma enhanced chemical vapor deposition and .lm properties. Appl. Surf. Sci., 206:159, 2003.

    Article  Google Scholar 

  93. 93. R. Larciprete, M. Danailov, A. Barinov, L. Gregoratti, M. Kiskinova. Thermal and pulsed laser induced surface reactions in Ti/Si(001) interfaces studied by spectromicroscopy with synchrotron radiation. J. Appl. Phys., 90:4361, 2001.

    Article  Google Scholar 

  94. 94. M.S. Alessandrino, M.G. Grimaldi, F. La Via. C49–C54 phase transition in anometric titanium disilicide nanograins. Microelec. Eng., 64:189, 2003.

    Article  Google Scholar 

  95. 95. L. Lu, M.O. Lai. Laser induced transformation of TiSi2. J. Appl. Phys., 94:4291, 2003.

    Article  Google Scholar 

  96. 96. S.L. Cheng, H.M. Lo, L.W. Cheng, S.M. Chang, L.J. Chen. Effects of stress on the interfacial reactions of metal thin .lms on (001)Si. Thin Solid Films, 424:33, 2003.

    Article  Google Scholar 

  97. 97. C.C. Tan, L. Lu, A. See, L. Chan. Effect of degree of amorphization of Si on the formation of titanium silicide. J. Appl. Phys., 91:2842, 2002.

    Article  Google Scholar 

  98. 98. M. Ekman, V. Ozolins. Electronic structure and bonding properties of titanium silicides. Phys. Rev. B, 57:4419, 1998.

    Article  Google Scholar 

  99. 99. F. Wakaya, Y. Ogi, M. Yoshida, S. Kimura, M. Takai, Y. Akasaka, K. Gamo. Cross-sectional transmission electron microscopy study of the in.uence of niobium on the formation of titanium silicide in small-feature contacts. Micr. Eng., 73:559, 2004.

    Article  Google Scholar 

  100. 100. S. Gemming, G. Seifert. Nanotube bundles from calcium disilicide - a DFT study. Phys. Rev. B, 68:075416-1–7, 2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Gemming, S., Enyashin, A., Schreiber, M. (2006). Amorphisation at Heterophase Interfaces. In: Hoffmann, K.H., Meyer, A. (eds) Parallel Algorithms and Cluster Computing. Lecture Notes in Computational Science and Engineering, vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33541-2_13

Download citation

Publish with us

Policies and ethics