Skip to main content

Localization of Electronic States in Amorphous Materials: Recursive Green’s Function Method and the Metal-Insulator Transition at E ≠ 0

  • Conference paper
Parallel Algorithms and Cluster Computing

Abstract

Traditionally, condensed matter physics has focused on the investigation of perfect crystals. However, real materials usually contain impurities, dislocations or other defects, which distort the crystal. If the deviations from the perfect crystalline structure are large enough, one speaks of disordered systems. The Anderson model [1] is widely used to investigate the phenomenon of localisation of electronic states in disordered materials and electronic transport properties in mesoscopic devices in general. Especially the occurrence of a quantum phase transition driven by disorder from an insulating phase, where all states are localised, to a metallic phase with extended states, has led to extensive analytical and numerical investigations of the critical properties of this metal-insulator transition (MIT) [2–4]. The investigation of the behaviour close to the MIT is supported by the one-parameter scaling hypothesis [5, 6]. This scaling theory originally formulated for the conductance plays a crucial role in understanding the MIT [7]. It is based on an ansatz interpolating between metallic and insulating regimes [8]. So far, scaling has been demonstrated to an astonishing degree of accuracy by numerical studies of the Anderson model [9–13]. However, most studies focused on scaling of the localisation length and the conductivity at the disorder-driven MIT in the vicinity of the band centre [9, 14, 15]. Assuming a power-law form for the d.c. conductivity, as it is expected from the one-parameter scaling theory, Villagonzalo et al. [6] have used the Chester-Thellung-Kubo-Greenwood formalism to calculate the temperature dependence of the thermoelectric properties numerically and showed that all thermoelectric quantities follow single-parameter scaling laws [16, 17].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. P. W. Anderson. Absence of diffusion in certain random lattices. Phys. Rev., 109:1492–1505, 1958.

    Article  Google Scholar 

  2. 2. B. Kramer and A. MacKinnon. Localization: theory and experiment. Rep. Prog. Phys., 56:1469–1564, 1993.

    Article  Google Scholar 

  3. 3. R. A. Römer and M. Schreiber. Numerical investigations of scaling at the Anderson transition. In T. Brandes and S. Kettemann, editors, The Anderson Transition and its Ramifications - Localisation, Quantum Interference, and Interactions, volume 630 of Lecture Notes in Physics, pages 3–19. Springer, Berlin, 2003.

    Google Scholar 

  4. 4. I. Plyushchay, R. A. Römer, and M. Schreiber. The three-dimensional Anderson model of localization with binary random potential. Phys. Rev. B, 68:064201, 2003.

    Article  Google Scholar 

  5. 5. J. E. Enderby and A. C. Barnes. Electron transport at the Anderson transition. Phys. Rev. B, 49:5062, 1994.

    Article  Google Scholar 

  6. 6. C. Villagonzalo, R. A. Römer, and M. Schreiber. Thermoelectric transport properties in disordered systems near the Anderson transition. Eur. Phys. J. B, 12:179–189, 1999. ArXiv: cond-mat/9904362.

    Article  Google Scholar 

  7. 7. E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan. Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys. Rev. Lett., 42:673–676, 1979.

    Article  Google Scholar 

  8. 8. P. A. Lee and T. V. Ramakrishnan. Disordered electronic systems. Rev. Mod. Phys., 57:287–337, 1985.

    Article  Google Scholar 

  9. 9. K. Slevin and T. Ohtsuki. Corrections to scaling at the Anderson transition. Phys. Rev. Lett., 82:382–385, 1999. ArXiv: cond-mat/9812065.

    Article  Google Scholar 

  10. 10. F. Milde, R. A. Römer, and M. Schreiber. Energy-level statistics at the metalinsulator transition in anisotropic systems. Phys. Rev. B, 61:6028–6035, 2000.

    Article  Google Scholar 

  11. 11. F. Milde, R. A. Römer, M. Schreiber, and V. Uski. Critical properties of the metal-insulator transition in anisotropic systems. Eur. Phys. J. B, 15:685–690, 2000. ArXiv: cond-mat/9911029.

    Article  Google Scholar 

  12. 12. M. L. Ndawana, R. A. Römer, and M. Schreiber. Finite-size scaling of the level compressibility at the Anderson transition. Eur. Phys. J. B, 27:399–407, 2002.

    Article  Google Scholar 

  13. 13. M. L. Ndawana, R. A. Römer, and M. Schreiber. Effects of scale-free disorder on the Anderson metal-insulator transition. Europhys. Lett., 68:678–684, 2004.

    Article  Google Scholar 

  14. 14. K. Slevin, P. Markoš, and T. Ohtsuki. Reconciling conductance .uctuations and the scaling theory of localization. Phys. Rev. Lett., 86:3594–3597, 2001.

    Article  Google Scholar 

  15. 15. D. Braun, E. Hofstetter, G. Montambaux, and A. MacKinnon. Boundary conditions, the critical conductance distribution, and one-parameter scaling. Phys. Rev. B, 64:155107, 2001.

    Article  Google Scholar 

  16. 16. C. Villagonzalo, R. A. Römer, and M. Schreiber. Transport properties near the Anderson transition. Ann. Phys. (Leipzig), 8:SI-269–SI-272, 1999. ArXiv: cond-mat/9908218.

    Google Scholar 

  17. 17. C. Villagonzalo, R. A. Römer, M. Schreiber, and A. MacKinnon. Behavior of the thermopower in amorphous materials at the metal-insulator transition. Phys. Rev. B, 62:16446–16452, 2000.

    Article  Google Scholar 

  18. 18. A. MacKinnon. The conductivity of the one-dimensional disordered Anderson model: a new numerical method. J. Phys.: Condens. Matter, 13:L1031–L1034, 1980.

    Google Scholar 

  19. 19. A. MacKinnon. The calculation of transport properties and density of states of disordered solids. Z. Phys. B, 59:385–390, 1985.

    Article  Google Scholar 

  20. 20. B. Mehlig and M. Schreiber. Energy-level and wave-function statistics in the Anderson model of localization. In K.H. Hoffmann and A. Meyer, editors, Parallel Algorithms and Cluster Computing - Implementations, Algorithms, and Applications, Lecture Notes in Computational Science and Engineering. Springer, Berlin, 2006.

    Google Scholar 

  21. 21. P. Karmann, R. A. Römer, M. Schreiber, and P. Stollmann. Fine structure of the integrated density of states for Bernoulli-Anderson models. In K.H. Hoffmann, and A. Meyer, editors, Parallel Algorithms and Cluster Computing - Implementations, Algorithms, and Applications, Lecture Notes in Computational Science and Engineering. Springer, Berlin, 2006.

    Google Scholar 

  22. 22. B. Bulka, B. Kramer, and A. MacKinnon. Mobility edge in the three dimensional Anderson model. Z. Phys. B, 60:13–17, 1985.

    Article  Google Scholar 

  23. 23. B. Bulka, M. Schreiber, and B. Kramer. Localization, quantum interference, and the metal-insulator transition. Z. Phys. B, 66:21, 1987.

    Article  Google Scholar 

  24. 24. T. Ohtsuki, K. Slevin, and T. Kawarabayashi. Review on recent progress on numerical studies of the Anderson transition. Ann. Phys. (Leipzig), 8:655–664, 1999. ArXiv: cond-mat/9911213.

    Article  MATH  Google Scholar 

  25. 25. T. Ando. Numerical study of symmetry effects on localization in two dimensions. Phys. Rev. B, 40:5325, 1989.

    Article  MathSciNet  Google Scholar 

  26. 26. P.Cain, R. A. Römer, and M. Schreiber. Phase diagram of the three-dimensional Anderson model of localization with random hopping. Ann. Phys. (Leipzig), 8:SI-33–SI-38, 1999. ArXiv: cond-mat/9908255.

    Google Scholar 

  27. 27. F. Milde, R. A. Römer, and M. Schreiber. Multifractal analysis of the metalinsulator transition in anisotropic systems. Phys. Rev. B, 55:9463–9469, 1997.

    Article  Google Scholar 

  28. 28. H. Stupp, M. Hornung, M. Lakner, O. Madel, and H. v. Löhneysen. Possible solution of the conductivity exponent puzzle for the metal-insulator transition in heavily doped uncompensated semiconductors. Phys. Rev. Lett., 71:2634–2637, 1993.

    Article  Google Scholar 

  29. 29. S. Waffenschmidt, C. Pffeiderer, and H. v. Löhneysen. Critical behavior of the conductivity of Si:P at the metal-insulator transition under uniaxial stress. Phys. Rev. Lett., 83:3005–3008, 1999. ArXiv: cond-mat/9905297.

    Article  Google Scholar 

  30. 30. F. Wegner. Electrons in disordered systems. Scaling near the mobility edge. Z. Phys. B, 25:327–337, 1976.

    Article  Google Scholar 

  31. 31. D. Belitz and T. R. Kirkpatrick. The Anderson-Mott transition. Rev. Mod. Phys., 66:261–380, 1994.

    Article  Google Scholar 

  32. 32. R. A. Römer, C. Villagonzalo, and A. MacKinnon. Thermoelectric properties of disordered systems. J. Phys. Soc. Japan, 72:167–168, 2002. Suppl. A.

    Google Scholar 

  33. 33. C. Villagonzalo. Thermoelectric Transport at the Metal-Insulator Transition in Disordered Systems. PhD thesis, Chemnitz University of Technology, 2001.

    Google Scholar 

  34. 34. P. Cain, F. Milde, R.A. Römer, and M. Schreiber. Applications of cluster computing for the Anderson model of localization. In S.G. Pandalai, editor, Recent Research Developments in Physics, volume 2, pages 171–184. Transworld Research Network, Trivandrum, India, 2001.

    Google Scholar 

  35. 35. P. Cain, F. Milde, R. A. Römer, and M. Schreiber. Use of cluster computing for the Anderson model of localization. Comp. Phys. Comm., 147:246–250, 2002.

    Article  MATH  Google Scholar 

  36. 36. B. Kramer and M. Schreiber. Transfer-matrix methods and .nite-size scaling for disordered systems. In K. H. Hoffmann and M. Schreiber, editors, Computational Physics, pages 166–188, Springer, Berlin, 1996.

    Google Scholar 

  37. 37. A. Eilmes, R. A. Römer, and M. Schreiber. The two-dimensional Anderson model of localization with random hopping. Eur. Phys. J. B, 1:29–38, 1998.

    Article  Google Scholar 

  38. 38. U. Elsner, V. Mehrmann, F. Milde, R. A. Römer, and M. Schreiber. The Anderson model of localization: a challenge for modern eigenvalue methods. SIAM J. Sci. Comp., 20:2089–2102, 1999. ArXiv: physics/9802009.

    Article  MATH  Google Scholar 

  39. 39. M. Schreiber, F. Milde, R. A. Römer, U. Elsner, and V. Mehrmann. Electronic states in the Anderson model of localization: benchmarking eigenvalue algorithms. Comp. Phys. Comm., 121–122:517–523, 1999.

    Article  Google Scholar 

  40. 40. E. N. Economou. Green's Functions in Quantum Physics. Springer-Verlag, Berlin, 1990.

    Google Scholar 

  41. 41. G. Czycholl, B. Kramer, and A. MacKinnon. Conductivity and localization of electron states in one dimensional disordered systems: further numerical results. Z. Phys. B, 43:5–11, 1981.

    Article  Google Scholar 

  42. 42. J. L. Cardy. Scaling and Renormalization in Statistical Physics. Cambridge University Press, Cambridge, 1996.

    Google Scholar 

  43. 43. M. Büttiker. Absence of backscattering in the quantum Hall effect in multiprobe conductors. Phys. Rev. B, 38:9375, 1988.

    Article  Google Scholar 

  44. 44. A. Croy. Thermoelectric properties of disordered systems. M.Sc. thesis, University of Warwick, Coventry, United Kindgom, 2005.

    Google Scholar 

  45. 45. B. K. Nikolić. Statistical properties of eigenstates in three-dimensional mesoscopic systems with o.-diagonal or diagonal disorder. Phys. Rev. B, 64:14203, 2001.

    Article  Google Scholar 

  46. 46. D. Boese, M. Lischka, and L.E. Reichl. Scaling behaviour in a quantum wire with scatterers. Phys. Rev. B, 62:16933, 2000.

    Article  Google Scholar 

  47. 47. P. Cain, M. L. Ndawana, R. A. Römer, and M. Schreiber. The critical exponent of the localization length at the Anderson transition in 3D disordered systems is larger than 1. 2001. ArXiv: cond-mat/0106005.

    Google Scholar 

  48. 48. J. X. Zhong, U. Grimm, R. A. Römer, and M. Schreiber. Level spacing distributions of planar quasiperiodic tight-binding models. Phys. Rev. Lett., 80:3996–3999, 1998.

    Article  Google Scholar 

  49. 49. U. Grimm, R. A. Römer, and G. Schliecker. Electronic states in topologically disordered systems. Ann. Phys. (Leipzig), 7:389–393, 1998.

    Article  Google Scholar 

  50. 50. U. Grimm, R. A. Römer, M. Schreiber, and J. X. Zhong. Universal level-spacing statistics in quasiperiodic tight-binding models. Mat. Sci. Eng. A, 294–296:564, 2000. ArXiv: cond-mat/9908063.

    Article  Google Scholar 

  51. 51. A. Eilmes, R. A. Römer, and M. Schreiber. Critical behavior in the twodimensional Anderson model of localization with random hopping. phys. stat. sol. (b), 205:229–232, 1998.

    Article  Google Scholar 

  52. 52. P. Biswas, P. Cain, R. A. Römer, and M. Schreiber. O.-diagonal disorder in the Anderson model of localization. phys. stat. sol. (b), 218:205–209, 2000. ArXiv: cond-mat/0001315.

    Article  Google Scholar 

  53. 53. A. Eilmes, R. A. Römer, and M. Schreiber. Localization properties of two interacting particles in a quasi-periodic potential with a metal-insulator transition. Eur. Phys. J. B, 23:229–234, 2001. ArXiv: cond-mat/0106603.

    Article  Google Scholar 

  54. 54. R. A. Römer and A. Punnoose. Enhanced charge and spin currents in the onedimensional disordered mesoscopic Hubbard ring. Phys. Rev. B, 52:14809–14817, 1995.

    Article  Google Scholar 

  55. 55. M. Leadbeater, R. A. Römer, and M. Schreiber. Interaction-dependent enhancement of the localisation length for two interacting particles in a one-dimensional random potential. Eur. Phys. J. B, 8:643–652, 1999.

    Article  Google Scholar 

  56. 56. R. A. Römer, M. Schreiber, and T. Vojta. Disorder and two-particle interaction in low-dimensional quantum systems. Physica E, 9:397–404, 2001.

    Article  Google Scholar 

  57. 57. C. Schuster, R. A. Römer, and M. Schreiber. Interacting particles at a metalinsulator transition. Phys. Rev. B, 65:115114–7, 2002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Croy, A., Römer, R.A., Schreiber, M. (2006). Localization of Electronic States in Amorphous Materials: Recursive Green’s Function Method and the Metal-Insulator Transition at E ≠ 0. In: Hoffmann, K.H., Meyer, A. (eds) Parallel Algorithms and Cluster Computing. Lecture Notes in Computational Science and Engineering, vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33541-2_11

Download citation

Publish with us

Policies and ethics