Skip to main content

Optimization and Decision Making under Interval and Fuzzy Uncertainty: Towards New Mathematical Foundations

  • Chapter

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 201))

Abstract

In many industrial engineering problems, we must select a design, select parameters of a process, or, in general, make a decision. Informally, this decision must be optimal, the best for the users. In traditional operations research, we assume that we know the objective function f(x) whose values describe the consequence of a decision x for the user. Optimization of well-defined functions is what started calculus in the first place: once we know the objective function f(x), we can use differentiation to find its maximum, e.g., as the point x at which the derivative of f with respect to x is equal to 0.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguiar MS, Costa ACR, Dimuro GP (2004) ICTM: an interval tessellation-based model for reliable topographic segmentation. Numerical Algorithms 37:3–11.

    Article  MATH  MathSciNet  Google Scholar 

  2. Angelov R, Markov S (1981) Extended Segment Analysis. Freiburger Intervall-Berichte 81(10):1–63.

    Google Scholar 

  3. Bojadziev G, Bojadziev M (1995). Fuzzy sets, fuzzy logic, applications, World Scientific, Singapore.

    MATH  Google Scholar 

  4. Booker J, Parkinson J, Ross TJ, eds. (2002) Combined fuzzy logic and probability applications. SIAM, Philadelphia.

    Google Scholar 

  5. Coblentz DD, Kreinovich V, Penn BS, Starks SA (2000) Towards reliable subdivision of geological areas: interval approach. In: Proc. NAFIPS’2000, Atlanta, Georgia, July 13–15, 2000, 368–372.

    Google Scholar 

  6. Coblentz DD, Kreinovich V, Penn BS, Starks SA (2003) Towards reliable subdivision of geological areas: interval approach, In: Reznik L, Kreinovich V (eds.), Soft Computing in Measurements and Information Acquisition, Springer-Verlag, Berlin-Heidelberg, 223–233.

    Google Scholar 

  7. de la Mora C, Wojciechowski P, Kreinovich V, Starks SA, Tanenbaum P, Kuzminykh A (2003) Robust methodology for characterizing system response to damage: a subjective (fuzzy) partial ordered modification of the traditional utility-probability scheme. In: Proceedings of the 22nd International Conference of the North American Fuzzy Information Processing Society NAFIPS’2003, Chicago, Illinois, July 24–26, 2003, 413–419.

    Google Scholar 

  8. Deboeck GJ, Villaverde K, Kreinovich K (1995) Interval methods for presenting performance of financial trading systems. Reliable Computing, Supplement (Extended Abstracts of APIC’95: International Workshop on Applications of Interval Computations, El Paso, TX, Febr. 23–25, 1995), 67–70.

    Google Scholar 

  9. Jaulin L, Kieffer M, Didrit O,Walter E (2001) Applied interval analysis: with examples in parameter and state estimation, robust control and robotics. Springer, London.

    MATH  Google Scholar 

  10. Kearfott RB (1996) Rigorous global search: continuous problems. Kluwer, Dordrecht.

    MATH  Google Scholar 

  11. Kearfott Rb, Kreinovich V., eds (1996) Applications of interval computations. Kluwer, Dordrecht.

    MATH  Google Scholar 

  12. Klir G, Yuan, B (1995) Fuzzy sets and fuzzy logic: theory and applications. Prentice Hall, Upper Saddle River, New Jersey.

    MATH  Google Scholar 

  13. Kreinovich V (2004) Probabilities, intervals, what next? optimization problems related to extension of interval computations to situations with partial information about probabilities. Journal of Global Optimization 29(3):265–280.

    Article  MATH  MathSciNet  Google Scholar 

  14. Kreinovich V, Lakeyev A, Rohn J, Kahl P (1997) Computational complexity and feasibility of data processing and interval computations. Kluwer, Dordrecht.

    Google Scholar 

  15. Kreinovich V, Nguyen HT, Dimuro GP, da Rocha Costa AC, Bedregal BRC (2003) A new differential formalism for interval-valued functions and its potential use in detecting 1-D landscape features. In: Proceedings of the International Conference on Information Technology InTech’03, Chiang Mai, Thailand, December 17–19, 2003, 491–498.

    Google Scholar 

  16. Kreinovich V, Nguyen HT, Ferson S, Ginzburg L (2003) From computation with guaranteed intervals to computation with confidence intervals: a new application of fuzzy techniques. In: Proceedings of the 21st International Conference of the North American Fuzzy Information Processing Society NAFIPS’2002, New Orleans, Louisiana, June 27–29, 2002, 418–422.

    Google Scholar 

  17. Kreinovich V, Nguyen HT, Wu B (to appear) On-line algorithms for computing mean and variance of interval data, and their use in intelligent systems, Information Sciences.

    Google Scholar 

  18. Lorkowski J, Kreinovich V (1996) If we measure a number, we get an interval. What if we measure a function or an operator? Reliable Computing 2(3):287–298.

    Article  MATH  MathSciNet  Google Scholar 

  19. Markov S (1979) Calculus for interval functions of a real variable. Computing 22:325–337.

    Article  MATH  MathSciNet  Google Scholar 

  20. Moore RE (1979) Methods and applications of interval analysis. SIAM, Philadelphia.

    MATH  Google Scholar 

  21. Moore RE, Lodwick WA (2003) Interval analysis and fuzzy set theory. Fuzzy Sets and Systems 135(1):5–9.

    Article  MATH  MathSciNet  Google Scholar 

  22. Muñoz H, Kearfott RB (2004) Slope intervals, generalized gradients, semigradients, and csets. Reliable Computing 10(3):163–193.

    Article  MATH  MathSciNet  Google Scholar 

  23. Neumaier A (2001) Introduction to numerical analysis. Cambridge Univ. Press, Cambridge.

    MATH  Google Scholar 

  24. Nguyen HT, Kreinovich V (1996) Nested intervals and sets: concepts, relations to fuzzy sets, and applications, In: Kearfott, RB, Kreinovich, V (eds.), Applications of interval computations. Kluwer, Dordrecht, 245–290.

    Google Scholar 

  25. Nguyen HT, Kreinovich V (1999) How to divide a territory? A new simple differential formalism for optimization of set functions. International Journal of Intelligent Systems 14(3):223–251.

    Article  MATH  Google Scholar 

  26. Nguyen HT, Walker, EA (1999) First course in fuzzy logic, CRC Press, Boca Raton, Florida.

    Google Scholar 

  27. Ratz D (1998) Automatic slope computation and its application in nonsmooth global optimization, Shaker-Verlag, Aachen.

    Google Scholar 

  28. Salvatore AP, Biswas A, Kreinovich V, Manriquez B, Cannito MP, Sinard RJ (2004) Expert system-type approach to voice disorders: scheduling botulinum toxin treatment for adductor spasmodic dysphonia. In: Proceedings of the Fifth International Conference on Intelligent Technologies InTech’04, Houston, Texas, December 2–4, 2004.

    Google Scholar 

  29. Sendov B (1977) Segment arithmetic and segment limit. C. R. Acad. Bulg. Sci. 30:955–968.

    MATH  MathSciNet  Google Scholar 

  30. Sendov B (1977) Segment derivatives and Taylor’s formula. C. R. Acad. Bulg. Sci. 30:1093–1096.

    MATH  MathSciNet  Google Scholar 

  31. Sendov B (1980) Some topics of segment analysis. In: Nickel K (ed.), Interval mathematics’80, Academic Press, N.Y., 236–245.

    Google Scholar 

  32. Sendov B (1990) Hausdorff approximations. Kluwer, Dordrecht.

    Google Scholar 

  33. Tanenbaum PJ, de la Mora C, Wojciechowski P, Kosheleva O, Kreinovich V, Starks SA, Kuzminykh A (2004) Robust methodology for characterizing system response to damage: approach based on partial order. In: Lirkov I, Margenov S, Wasniewski J, Yalamov P (eds.), Large-Scale Scientific Computing, Proceedings of the 4-th International Conference LSSC’2003, Sozopol, Bulgaria, June 4–8, 2003, Springer Lecture Notes in Computer Science 2907:276–283.

    Google Scholar 

  34. Villaverde K, Kreinovich V (1993) A linear-time algorithm that locates local extrema of a function of one variable from interval measurement results. Interval Computations, No. 4:176–194.

    MathSciNet  Google Scholar 

  35. Villaverde K, Kreinovich V (1995) Parallel algorithm that locates local extrema of a function of one variable from interval measurement results. Reliable Computing, Supplement (Extended Abstracts of APIC’95: International Workshop on Applications of Interval Computations, El Paso, TX, Febr. 23–25, 1995), 212–219.

    Google Scholar 

  36. Walley P (1991) Statistical reasoning with imprecise probabilities, Chapman & Hall, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Nguyen, H.T., Kreinovich, V. (2006). Optimization and Decision Making under Interval and Fuzzy Uncertainty: Towards New Mathematical Foundations. In: Kahraman, C. (eds) Fuzzy Applications in Industrial Engineering. Studies in Fuzziness and Soft Computing, vol 201. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33517-X_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-33517-X_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33516-0

  • Online ISBN: 978-3-540-33517-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics