Mathematical Properties of Cosmological Models with Accelerated Expansion

  • Alan D. Rendall
Part of the Lecture Notes in Physics book series (LNP, volume 692)


An introduction to solutions of the Einstein equations defining cosmological models with accelerated expansion is given. Connections between mathematical and physical issues are explored. Theorems which have been proved for solutions with positive cosmological constant or nonlinear scalar fields are reviewed. Some remarks are made on more exotic models such as the Chaplygin gas, tachyons and k-essence.


Dark Energy Cosmological Constant Cosmological Model Einstein Equation Accelerate Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    U. Alam, V. Sahni, T.D. Saini, A.A. Starobinsky: Is there supernova evidence for dark energy metamorphosis? Mon. Not. Roy. Astron. Soc. 354, 275–291 (2004)CrossRefADSGoogle Scholar
  2. 2.
    C. Armendariz-Picon, V. Mukhanov, P. Steinhardt: Essentials of k-essence. Phys. Rev. D 63, 103510 (2001)CrossRefADSGoogle Scholar
  3. 3.
    V.A. Belinskii, L.P. Grishchuk, Ya. B. Zeldovich, I.M. Khalatnikov: Inflationary stages in cosmological models with a scalar field. Sov. Phys. JETP 62, 195–203 (1986)MathSciNetGoogle Scholar
  4. 4.
    M. Bojowald: Loop quantum cosmology: recent progress (2004) gr–qc/0402053Google Scholar
  5. 5.
    R.R. Caldwell, R. Dave, P.J. Steinhardt: Cosmological imprint of an energy component with general equation of state. Phys. R.ev. Lett. 80, 1582–1585 (1998)CrossRefADSGoogle Scholar
  6. 6.
    H. Friedrich: Existence and structure of past asymptotically simple solutions of Einstein's field equations with positive cosmological constant. J. Geom. Phys. 3, 101–117 (1986)zbMATHMathSciNetCrossRefADSGoogle Scholar
  7. 7.
    H. Friedrich: On the global existence and asymptotic behaviour of solutions to the Einstein-Yang-Mills equations. J. Diff. Geom. 34, 275–345 (1991)zbMATHMathSciNetGoogle Scholar
  8. 8.
    H. Friedrich, A.D. Rendall: The Cauchy problem for the Einstein equations. In : Einstein's Field Equations and their Physical Implications, ed by B. G. Schmidt (Springer, Berlin 2000)Google Scholar
  9. 9.
    G.W. Gibbons: Phantom matter and the cosmological constant. (2003) hep–th/0302199Google Scholar
  10. 10.
    A.H. Guth: The inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347–356 (1981)CrossRefADSGoogle Scholar
  11. 11.
    A.H. Guth: The Inflationary Universe (Perseus Books, Reading 1997)Google Scholar
  12. 12.
    J.J. Halliwell: Scalar fields in cosmology with an exponential potential. Phys. Lett. B 185, 341–344 (1987)MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    A. Kamenshchik, U. Moschella, V. Pasquier: An alternative to quintessence. Phys. Lett. B 511, 265–268 (2001)zbMATHCrossRefADSGoogle Scholar
  14. 14.
    Y. Kitada, K. Maeda: Cosmic no-hair theorem in homogeneous spacetimes I. Bianchi models. Class. Quantum Grav. 10, 703–734 (1993)zbMATHMathSciNetCrossRefADSGoogle Scholar
  15. 15.
    H. Lindblad: A remark on global existence for small initial data of the minimal surface equation in Minkowskian space time. Proc. Amer. Math. Soc. 132, 1095–1102 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    H. Lee: Asymptotic behaviour of the Einstein-Vlasov system with a positive cosmological constant. Math. Proc. Camb. Phil. Soc. 137, 495–509 (2004)zbMATHCrossRefGoogle Scholar
  17. 17.
    H. Lee: The Einstein-Vlasov system with a scalar field (2004) gr–qc/0404007Google Scholar
  18. 18.
    R. Maartens: Brane- World Gravity. Living Reviews in Relativity 7 (2004), 7.
  19. 19.
    V. Müller, H.-J. Schmidt, A.A. Starobinsky: Power-law inflation as an attractor solution for inhomogeneous cosmological models. Class. Quantum Grav. 7, 1163–1168 (1990)CrossRefADSGoogle Scholar
  20. 20.
    A.D. Rendall: Asymptotics of solutions of the Einstein equations with positive cosmological constant. Ann. H. Poincaré 5, 1041–1064 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    A.D. Rendall: Accelerated cosmological expansion due to a scalar field whose potential has a positive lower bound. Class. Quantum Grav. 21, 2445–2454 (2004)zbMATHMathSciNetCrossRefADSGoogle Scholar
  22. 22.
    V. Sahni, T.D. Saini, A.A. Starobinsky, U. Alam: Statefinder -a new geometrical diagnostic of dark energy. JETP Lett. 77, 201–206 (2003)CrossRefADSGoogle Scholar
  23. 23.
    A.A. Starobinsky: Isotropization of arbitrary cosmological expansion given an effective cosmological constant. JETP Lett. 37, 66–69 (1983)ADSGoogle Scholar
  24. 24.
    S.B. Tchapnda, N. Noutchegueme: The surface-symmetric Einstein-Vlasov system with cosmological constant (2003) gr-qc/0304098Google Scholar
  25. 25.
    S.B. Tchapnda, A.D. Rendall: Global existence and asymptotic behaviour in the future for the Einstein-Vlasov system with positive cosmological constant. Class. Quantum Grav. 20, 3037–3049 (2003)zbMATHMathSciNetCrossRefADSGoogle Scholar
  26. 26.
    D. Tegankong, N. Noutchegueme, A.D. Rendall: Local existence and continuation criteria for solutions of the Einstein-Vlasov-scalar field system with surface symmetry (2004) gr-qc/0405039Google Scholar
  27. 27.
    R.M. Wald: Asymptotic behaviour of homogeneous cosmological models with cosmological constant. Phys. Rev. D 28, 2118–2120 (1983)zbMATHMathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Alan D. Rendall
    • 1
  1. 1.Max-Planck-Institut für GravitationsphysikGolmGermany

Personalised recommendations