Concepts of Hyperbolicity and Relativistic Continuum Mechanics

  • Robert Beig
Part of the Lecture Notes in Physics book series (LNP, volume 692)


After a short introduction to the characteristic geometry underlying weakly hyperbolic systems of partial differential equations we review the notion of symmetric hyperbolicity of first-order systems and that of regular hyperbolicity of second-order systems. Numerous examples are provided, mainly taken from nonrelativistic and relativistic continuum mechanics.


Cauchy Problem Einstein Equation Hyperbolic System Principal Symbol Smooth Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Alekseevsky, A. Kriegl, M. Losik, P.W. Michor: Choosing roots of polynomials smoothly. Israel J. Math. 105, 203–233 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    A.M. Anile: Relativistic Fluids and Magneto-Fluids (Cambride University Press, Cambridge 1989)zbMATHGoogle Scholar
  3. 3.
    M.F. Atiyah, R. Bott, L. Gårding: Lacunas for hyperbolic differential operators with constant coefficients I; II. Acta Math. 124, 109–189 (1970); 131, 145–206 (1973)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    S. Barcelo, S. Liberati, S. Sonego, M. Visser: Causal structure of acoustic spacetimes (2004) gr-qc/04080221Google Scholar
  5. 5.
    H.H. Bauschke, O. Güler, A.S. Lewis, H.S. Sendov: Hyperbolic polynomials and convex analysis. Can. J. Math. 53, 470–488 (2001)zbMATHCrossRefGoogle Scholar
  6. 6.
    R. Beig, B.G. Schmidt: Relativistic elasticity. Class. Quantum Grav. 20, 889–904 (2003)zbMATHMathSciNetCrossRefADSGoogle Scholar
  7. 7.
    R. Beig: Nonrelativistic and relativistic continuum mechanics. To appear in the Proceedings of the Seventh Hungarian Relativity Workshop, Sarospatak, Hungary, gr-qc/0403073Google Scholar
  8. 8.
    R. Beig, M. Wernig-Pichler: The Cauchy problem for relativistic elastic bodies with natural boundary conditions. In preparation (2004)Google Scholar
  9. 9.
    R. Benedetti, J.-J. Risler: Real Algebraic and Semialgebraic Sets (Hermann, Paris 1990)Google Scholar
  10. 10.
    D. Christodoulou: The Action Principle and Partial Differential Equations (Princeton University Press, Princeton 2000)zbMATHGoogle Scholar
  11. 11.
    D. Christodoulou: On hyperbolicity. Contemporary Mathematics 283, 17–28 (2000)MathSciNetADSGoogle Scholar
  12. 12.
    P.T. Chruściel: Black holes. In Conformal Structure of Spacetime, ed by J. Frauendiener and H. Friedrich, Lecture Notes in Physics 604 (Springer, Heidelberg 2002)Google Scholar
  13. 13.
    R. Courant, D. Hilbert: Methods of Mathematical Physics, Volume II (Interscience Publishers, New York 1962)Google Scholar
  14. 14.
    D.M. DeTurck, D. Yang: Existence of elastic deformations with prescribed principal strains and triply orthogonal systems. Duke Math. Journal 51, 243–260 (1984)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    G.F.D. Duff: The Cauchy problem for elastic waves in an anisotropic medium. Transactions Roy. Soc. A 252, 249–273 (1960)zbMATHMathSciNetADSCrossRefGoogle Scholar
  16. 16.
    J. Frauendiener: A note on the relativistic Euler equations. Class. Quantum Grav. 20, L193–L196 (2003)zbMATHMathSciNetCrossRefADSGoogle Scholar
  17. 17.
    H. Friedrich: On the regular and the asymptotic characteristic initial value problem for Einstein's vacuum field equations. Proc. Roy. Soc. A 375, 169–184 (1985)MathSciNetADSGoogle Scholar
  18. 18.
    H. Friedrich, A. Rendall: The Cauchy problem for the Einstein equations. In: Einstein's Field Equations and their Physical Interpretation, ed by B. G. Schmidt, Lecture Notes in Physics 540 (Springer, Heidelberg 2000)Google Scholar
  19. 19.
    L. Gårding: An inequality for hyperbolic polynomials. J. of Mathematics and Mechanics 8, 957–965 (1959)zbMATHGoogle Scholar
  20. 20.
    L. Gårding: History of the mathematics of double refraction. Arch. Hist. Ex. Sci. 40, 355–385 (1989)zbMATHCrossRefGoogle Scholar
  21. 21.
    I.M. Gelfand, M.M. Kapranov, A.V. Zelevinsky: Discriminants, Resultants and Multidemensional Determinants (Birkhäuser, Boston 1994)CrossRefGoogle Scholar
  22. 22.
    M. Giaquinta, S. Hildebrandt: Calculus of Variations II (Springer, Berlin 1996)Google Scholar
  23. 23.
    G.-M. Greuel, G. Pfister, H. Schönemann: Singular 2.0. A computer algebra system for polynomial computations. Centre for Computer Algebra, University of Kaiserslautern (2001)
  24. 24.
    F.W. Hehl, Y.N. Obukhov: Foundations of Classical Electrodynamics ȓ Charge, Flux, and Metric (Birkhäuser, Basel 2003)zbMATHGoogle Scholar
  25. 25.
    G. Herglotz: Vorlesungen über die Mechanik der Kontinua. Göttingen lectures of 1926 and 1931, elaborated by R. B. Guenther and H. Schwerdtfeger (Teubner, Leipzig 1988)Google Scholar
  26. 26.
    L. Hörmander: Hyperbolic systems with double characteristics. Comm. Pure Appl. Math. 46, 89–106 (1993)CrossRefGoogle Scholar
  27. 27.
    T.J.R. Hughes, T. Kato, J.E. Marsden: Well-posed quasilinear second-order hyperbolic systems with applications to Nonlinear Elastodynamics and General Relativity. Arch. Rat. Mech. Anal. 63, 273–294 (1977)zbMATHMathSciNetGoogle Scholar
  28. 28.
    F. John: Algebraic conditions for hyperbolicity of systems of partial differential equations. Comm.Pure Appl.Math. 31, 89–106 (1978)zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    T. Kato: The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Rat. Mech. Anal. 58, 181–205 (1975)zbMATHCrossRefGoogle Scholar
  30. 30.
    A. Kostelecký, M. Mewes: Signals for Lorentz violation in electrodynamics. Phys. Rev. D 66, 056005–056028 (2002)CrossRefADSGoogle Scholar
  31. 31.
    H.-O. Kreiss, O. Ortiz: Some mathematical and numerical questions connected with first and second order time dependent systems of partial differential equations. In: The Conformal Structure of Space-Time, ed by J. Frauendiener and H. Friedrich), Lecture Notes in Physics 604 (2002)Google Scholar
  32. 32.
    C. Lämmerzahl, F. W. Hehl: Riemannian cone from vanishing birefringence in premetric electrodynamics. (2004) gr-qc/0409072Google Scholar
  33. 33.
    G. Nagy, O.E. Ortiz, O.A. Reula: Strongly hyperbolic second order Einstein's evolution equations. Phys. Rev. D 70, 044012(15) (2004)MathSciNetADSGoogle Scholar
  34. 34.
    V. Perlick: Ray Optics, Fermat's Principle, and Applications to General Relativity, Lecture Notes in Physics m61 (Springer, Heidelberg 2000)Google Scholar
  35. 35.
    J. Rauch: Group velocity at smooth points of hyperbolic characteristic varieties. Astérisque 284, 265–269 (2003)zbMATHMathSciNetGoogle Scholar
  36. 36.
    G.F. Rubilar: Linear pre-metric electrodynamics and deduction of the lightcone. Ann. Phys. (Leipzig) 11, 717–782 (2002)zbMATHMathSciNetCrossRefADSGoogle Scholar
  37. 37.
    G. Salmon: Lectures Introductory to the Modern Higher Algebra (Dublin 1885; reprinted by Chelsea Publ., New York 1969)Google Scholar
  38. 38.
    D. Serre: Formes quadratiques et calcul des variations. J. Math. Pures et Appl. 62, 177–196 (1983)zbMATHMathSciNetGoogle Scholar
  39. 39.
    M. Stoth: Decay estimates for solutions of linear elasticity for anisotropic media. Math. Meth. Appl. Sci. 19, 15–31 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  40. 40.
    M.E. Taylor: Pseudodifferential Operators and Nonlinear PDE (Birkhäuser, Boston 1991)zbMATHGoogle Scholar
  41. 41.
    M.E. Taylor: Pseudodifferential Operators (Princeton University Press, Princeton 1981)zbMATHGoogle Scholar
  42. 42.
    F.J. Terpstra: Die Darstellung biquadratischer Formen als Summen von Quadraten mit Anwendung auf die Variationsrechnung. Math. Ann. 116, 166–180 (1938)zbMATHMathSciNetCrossRefGoogle Scholar
  43. 43.
    A. Trautman: Comparison of Newtonian and relativistic theories of space-time. In: Perspectives in Geometry and Relativity, ed by B. Hoffmann, (Indiana University Press 1966)Google Scholar
  44. 44.
    J.P. Wolfe: Imaging Phonons (Cambridge University Press, Cambridge 1998)CrossRefGoogle Scholar
  45. 45.
    A.Ç. Zenginoglŭ: Ideal magnetohydrodynamics in curved spacetime. Masters Thesis, University of Vienna (2003)Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Robert Beig
    • 1
  1. 1.Institut für Theoretische Physik der Universität WienWienAustria

Personalised recommendations