Advertisement

Some Mathematical Problems in Numerical Relativity

  • Maria Babiuc
  • Béla Szilágyi
  • Jeffrey Winicour
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 692)

Abstract

The main goal of numerical relativity is the long time simulation of highly nonlinear spacetimes that cannot be treated by perturbation theory. This involves analytic, computational and physical issues. At present, the major impasses to achieving global simulations of physical usefulness are of an analytic/ computational nature. We present here some examples of how analytic insight can lend useful guidance for the improvement of numerical approaches.

Keywords

Wave Packet Boundary Data Neumann Boundary Condition Cauchy Data Hamiltonian Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.O. Friedrichs: Comm. Pure Appl. Math. 11, 333 (1958)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    P.D. Lax, R. S. Phillips: Comm. Pure Appl. Math. 13, 427 (1960)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    B. Gustafsson, H.-O. Kreiss, J. Oliger: Time Dependent Problems and Difference Methods (Wiley, New York 1995)zbMATHGoogle Scholar
  4. 4.
    P. Secchi: Arch. Rational Mech. Anal. 134, 155 (1996)zbMATHMathSciNetCrossRefADSGoogle Scholar
  5. 5.
    Y. Foures-Bruhat: Acta. Math. 88, 141 (1955)MathSciNetCrossRefGoogle Scholar
  6. 6.
    A.E. Fischer, J.E. Marsden: Comm. Math. Phys. 28, 1 (1972)zbMATHMathSciNetCrossRefADSGoogle Scholar
  7. 7.
    H. Lindblad, I. Rodnianski: Global existence for the Einstein vacuum equations in wave coordinates, AP/0312479Google Scholar
  8. 8.
    B. Szilágyi, J. Winicour: Phys. Rev. D 68, 041501 (2003)MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    www.appleswithapples.orgGoogle Scholar
  10. 10.
    M. Alcubierre et al: Class. Quantum Grav. 21, 589 (2004)zbMATHMathSciNetCrossRefADSGoogle Scholar
  11. 11.
    C. Bona, T. Ledvinka, C. Palenzuela, M. Zacek: A symmetry-breaking mechanism for the Z4 general-covariant evolution system. gr–qc/0307067Google Scholar
  12. 12.
    M. Tiglio, L. Lehner, D. Neilsen: 3D simulations of Einstein’s equations: symmetric hyperbolicity, live gauges and dynamic control of the constraints. gr–qc/0312001Google Scholar
  13. 13.
    H. Friedrich, G. Nagy: Commun. Math. Phys. 201, 619 (1999)zbMATHMathSciNetCrossRefADSGoogle Scholar
  14. 14.
    H.-O. Kreiss, O.E. Ortiz: Lect. Notes Phys. 604, 359 (2002)zbMATHMathSciNetADSCrossRefGoogle Scholar
  15. 15.
    B. Szilágyi, B. Schmidt, J. Winicour: Phys. Rev. D 65, 064015 (2002)MathSciNetCrossRefADSGoogle Scholar
  16. 16.
    C. Bona, C. Palenzuela: Lect.Notes Phys. 617, 130 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Maria Babiuc
    • 1
  • Béla Szilágyi
    • 1
  • Jeffrey Winicour
    • 1
    • 2
  1. 1.Department of Physics and AstronomyUniversity of PittsburghPittsburghUSA
  2. 2.Max-Planck-Institut für GravitationsphysikGolmGermany

Personalised recommendations