Advertisement

Recent Analytical and Numerical Techniques Applied to the Einstein Equations

  • Dave Neilsen
  • Luis Lehner
  • Olivier Sarbach
  • Manuel Tiglio
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 692)

Abstract

Combining deeper insight of Einstein’s equations with sophisticated numerical techniques promises the ability to construct accurate numerical implementations of these equations. We illustrate this in two examples, the numerical evolution of “bubble” and single black hole space-times. The former is chosen to demonstrate how accurate numerical solutions can answer open questions and even reveal unexpected phenomena. The latter illustrates some of the difficulties encountered in three-dimensional black hole simulations, and presents some possible remedies.

Keywords

Black Hole Apparent Horizon Naked Singularity Black String Cosmic Censorship 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Gustaffson, H. Kreiss, J. Oliger: Time Dependent Problems and Difference Methods (Wiley, New York 1995)Google Scholar
  2. 2.
    B. Strand: Journal of Computational Physics 110, 47 (1994)zbMATHMathSciNetCrossRefADSGoogle Scholar
  3. 3.
    P. Olsson: Summation by parts, projections and stability. I. Mathematics of Computation 64, 1035 (1995); Supplement to Summation by parts, projections and stability. I. Mathematics of Computation 64, S23 (1995); Summation by parts, projections and stability. II. Mathematics of Computation 64, 1473 (1995)zbMATHMathSciNetCrossRefADSGoogle Scholar
  4. 4.
    G. Calabrese, L. Lehner, D. Neilsen, J. Pullin, O. Reula, O. Sarbach, M. Tiglio: Class. Quant. Grav. 20, L245 (2003)zbMATHMathSciNetCrossRefADSGoogle Scholar
  5. 5.
    G. Calabrese, L. Lehner, O. Reula, O. Sarbach, M. Tiglio: gr–qc/0308007Google Scholar
  6. 6.
    L. Lehner, D. Neilsen, O. Reula, M. Tiglio: gr–qc/0406116Google Scholar
  7. 7.
    G. Calabrese, J. Pullin, O. Sarbach, M. Tiglio: Phys. Rev. D 66, 041501 (2002)MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    H.-O. Kreiss, L. Wu: Appl. Numr. Math. 12, 213 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    D. Levy and E. Tadmor: SIAM Journal on Num. Anal. 40, 40 (1998)zbMATHMathSciNetGoogle Scholar
  10. 10.
    J.M. Stewart: Class. Quantum Grav. 15, 2865 (1998)zbMATHCrossRefADSGoogle Scholar
  11. 11.
    H. Friedrich, G. Nagy: Comm. Math. Phys. 201, 619 (1999)zbMATHMathSciNetCrossRefADSGoogle Scholar
  12. 12.
    M.S. Iriondo, O.A. Reula: Phys. Rev. D 65, 044024 (2002)MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    B. Szilagyi, B. Schmidt, J. Winicour: Phys. Rev. D 65, 064015 (2002)MathSciNetCrossRefADSGoogle Scholar
  14. 14.
    J.M. Bardeen, L.T. Buchman: Phys. Rev. D 65, 064037 (2002)MathSciNetCrossRefADSGoogle Scholar
  15. 15.
    G. Calabrese, L. Lehner, M. Tiglio: Phys. Rev. D 65, 104031 (2002)MathSciNetCrossRefADSGoogle Scholar
  16. 16.
    B. Szilagyi, J. Winicour: Phys. Rev. D 68, 041501 (2003)MathSciNetCrossRefADSGoogle Scholar
  17. 17.
    G. Calabrese, J. Pullin, O. Reula, O. Sarbach, M. Tiglio: Comm. Math. Phys. 240, 377 (2003)zbMATHMathSciNetCrossRefADSGoogle Scholar
  18. 18.
    G. Calabrese, O. Sarbach: J. Math. Phys. 44, 3888 (2003)zbMATHMathSciNetCrossRefADSGoogle Scholar
  19. 19.
    S. Frittelli, R. Gomez: Class. Quantum Grav. 20, 2379 (2003); Phys. Rev. D 68 044014 (2003); Phys. Rev. D 69, 124020 (2004) gr–qc/0404070zbMATHMathSciNetCrossRefADSGoogle Scholar
  20. 20.
    C. Gundlach, J.M. Martín-García: Phys. Rev. D 70, 044031 (2004); 044032 (2004)MathSciNetCrossRefADSGoogle Scholar
  21. 21.
    L. Lindblom, M.A. Scheel, L.E. Kidder, H.P. Pfeiffer, D. Shoemaker, S.A. Teukolsky: Phys. Rev. D 69, 124025 (2004)MathSciNetCrossRefADSGoogle Scholar
  22. 22.
    O. Reula, O. Sarbach: gr–qc/0409027Google Scholar
  23. 23.
    L. Kidder, M. Scheel, S. Teukolsky: Phys. Rev. D 64, 064017 (2001)MathSciNetCrossRefADSGoogle Scholar
  24. 24.
    M. Tiglio: gr–qc/0304062Google Scholar
  25. 25.
    E. Witten: Nucl. Phys. B 195, 481 (1982)zbMATHCrossRefADSGoogle Scholar
  26. 26.
    D. Brill, H. Pfister: Phys. Lett. B 228, 359 (1989)MathSciNetCrossRefADSGoogle Scholar
  27. 27.
    D. Brill, G.T. Horowitz: Phys. Lett. B 262, 437 (1991)MathSciNetCrossRefADSGoogle Scholar
  28. 28.
    S. Corley, T. Jacobson: Phys. Rev. D 49, 6261 (1994)MathSciNetCrossRefADSGoogle Scholar
  29. 29.
    O. Sarbach, L. Lehner: Phys. Rev. D 69, 021901 (2004)MathSciNetCrossRefADSGoogle Scholar
  30. 30.
    R. Wald: Annals of Phys. 83, 548 (1974)CrossRefADSGoogle Scholar
  31. 31.
    M. Choptuik, L. Lehner, I. Olabarrieta et al: Phys. Rev. D 68, 044001 (2003)MathSciNetCrossRefADSGoogle Scholar
  32. 32.
    O. Sarbach, L. Lehner: hep–th/0407265Google Scholar
  33. 33.
    M. Tiglio, L. Lehner, D. Neilsen: gr–qc/0312001Google Scholar
  34. 34.
    O. Sarbach, M. Tiglio: Phys. Rev. D 66, 064023 (2002)MathSciNetCrossRefADSGoogle Scholar
  35. 35.
    K. Martel, E. Poisson: Am. J. Phys. 69, 476 (2001)CrossRefADSGoogle Scholar
  36. 36.
    J. Thornburg: gr–qc/0306056Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Dave Neilsen
    • 1
    • 2
  • Luis Lehner
    • 1
  • Olivier Sarbach
    • 1
    • 3
  • Manuel Tiglio
    • 1
    • 4
    • 5
  1. 1.Department of Physics & AstronomyLouisiana State UniversityBaton RougeUSA
  2. 2.Department of Physics & AstronomyBrigham Young UniversityProvoUSA
  3. 3.Theoretical Astrophysics 130-33California Institute of TechnologyPasadenaUSA
  4. 4.Center for Computation and TechnologyLouisiana State UniversityBaton RougeUSA
  5. 5.Center for Radiophysics and Space ResearchCornell UniversityIthaca

Personalised recommendations