Skip to main content

Oxidative Stress in Sepsis: Implications on Liver Protein Patterns and Analysis via Modified Proteomics Technology

  • Conference paper
Yearbook of Intensive Care and Emergency Medicine

Part of the book series: Yearbook of Intensive Care and Emergency Medicine ((YEARBOOK,volume 2006))

  • 651 Accesses

Conclusion

Taken together, proteins of the antioxidant defense system can be damaged by oxidative stress, and, in fact, there is evidence that they are even specifically susceptible. The oxidative loss of protein moiety is partially compensated by de novo synthesis. This compensatory mechanism complicates any attempt to relate mRNA profiles assessed by cDNA technology or protein expression profiles assessed by 2D-gel electrophoresis to the functionally active protein content. The dynamic cellular response with sepsis can only be revealed by disentangling the enormously complex response at the protein level. The only method able to deliver appropriate information is a proteomic platform based on differential and quantitative approaches, which is extended by synthesis or turnover measurements.

Our ultimate aim is to use this dynamic approach:

  • to understand the complex interaction between the various elements of the defense system;

  • to define a set of measurements necessary to characterize the various conditions of the system; and

  • to develop a tool box to evaluate the efficacy of therapeutic measures intended to support the defense system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schoenberg MH, Weiss M, Radermacher P (1998) Outcome of patients with sepsis and septic shock after ICU treatment. Langenbecks Arch Surg 383:44–48

    Article  CAS  PubMed  Google Scholar 

  2. Martin GS, Mannino DM, Eaton S, Moss M (2003) The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348:1546–1554

    Article  PubMed  Google Scholar 

  3. Macarthur H, Westfall TC, Riley DP, et al (2000) Inactivation of catecholamines by superoxide gives new insights on the pathogenesis of septic shock. Proc Natl Acad Sci USA 97:9753–9758.

    Article  CAS  PubMed  Google Scholar 

  4. de Werra I, Jaccard C, Corradin SB, et al (1997) Cytokines, nitrite/nitrate, soluble tumor necrosis factor receptors, and procalcitonin concentrations: comparisons in patients with septic shock, cardiogenic shock, and bacterial pneumonia. Crit Care Med 25:607–613

    Article  PubMed  Google Scholar 

  5. Babior BM (2000) Phagocytes and oxidative stress. Am J Med 109:33–44

    Article  CAS  PubMed  Google Scholar 

  6. Vega JM, Diaz J, Serrano E, et al (2002) Oxidative stress in critically ill patients with systemic inflammatory response syndrome. Crit Care Med 30:1782–1786

    Article  Google Scholar 

  7. Barth E, Fischer G, Schneider EM, et al (2002) Peaks of endogenous G-CSF serum concentrations are followed by an increase in respiratory burst activity of granulocytes in patients with septic shock. Cytokine 17:275–284

    Article  CAS  PubMed  Google Scholar 

  8. Oldner A, Goiny M, Rudehill A, et al (1999) Tissue hypoxanthine reflects gut vulnerability in porcine endotoxin shock. Crit Care Med 27:790–797.

    Article  CAS  PubMed  Google Scholar 

  9. Lamarque D, Whittle BJ (1995) Involvement of superoxide and xanthine oxidase in neutrophil-independent rat gastric damage induced by NO donors. Br J Pharmacol 116:1843–1848

    CAS  PubMed  Google Scholar 

  10. Stadtman ER, Levine RL (2000) Protein oxidation. Ann NY Acad Sci 899:191–208

    Article  CAS  PubMed  Google Scholar 

  11. Marnett LJ (2000) Oxyradicals and DNA damage. Carcinogenesis 21:361–370

    Article  CAS  PubMed  Google Scholar 

  12. Bogdan C (2001) Nitric oxide and the regulation of gene expression. Trends Cell Biol 11:66–75

    Article  CAS  PubMed  Google Scholar 

  13. Nordberg J, Arner ES (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 31:1287–1312

    Article  CAS  PubMed  Google Scholar 

  14. Kamata H, Hirata H (1999) Redox regulation of cellular signalling. Cell Signal 11:1–14

    Article  CAS  PubMed  Google Scholar 

  15. Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279:L1005–L1028

    CAS  PubMed  Google Scholar 

  16. Marshall HE, Hess DT, Stamler JS (2004) S-nitrosylation: physiological regulation of NF-kappaB. Proc Natl Acad Sci USA 101:8841–8842

    Article  CAS  PubMed  Google Scholar 

  17. Ghosh R and Mitchell DL (1999) Effect of oxidative DNA damage in promoter elements on transcription factor binding. Nucleic Acids Res 27:3213–3218

    Article  CAS  PubMed  Google Scholar 

  18. Marshall HE, Merchant K, Stamler JS (2000) Nitrosation and oxidation in the regulation of gene expression. FASEB J 14:1889–1900

    Article  CAS  PubMed  Google Scholar 

  19. Nguyen T, Yang CS, Picket CB (2004) The pathways and molecular mechanism regulating NrF2 activation in response to chemical stress. Free Radic Biol Med 37:433–441

    Article  CAS  PubMed  Google Scholar 

  20. Guzy RD, Hoyos B, Robin E, et al (2005) Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 1:401–408

    Article  CAS  PubMed  Google Scholar 

  21. Nakamura H, Nakamura K, Yodoi J (1997) Redox regulation of cellular activation. Annu Rev Immunol 15:351–369

    Article  CAS  PubMed  Google Scholar 

  22. Winyard PG, Moody CJ, Jacob C (2005) Oxidative activation of antioxidant defence. Trends Biochem Sci 30:453–461

    Article  CAS  PubMed  Google Scholar 

  23. Droy-Lefaix MT, Drouet Y, Geraud G, et al (1991) Superoxide dismutase (SOD) and the PAF-antagonist (BN 52021) reduce small intestinal damage induced by ischemia-reperfusion. Free Radic Res Commun 12–13 Pt 2:725–735

    Article  PubMed  Google Scholar 

  24. Esplugues JV, Whittle BJ (1989) Gastric damage following local intra-arterial administration of reactive oxygen metabolites in the rat. Br J Pharmacol 97:1085–1092

    CAS  PubMed  Google Scholar 

  25. Fantone JC, Ward PA (1982) Role of oxygen-derived free radicals and metabolites in leukocyte-dependent inflammatory reactions. Am J Pathol 107:395–418

    CAS  PubMed  Google Scholar 

  26. Salvemini D, Wang ZQ, Wyatt PS, et al (1996) Nitric oxide: a key mediator in the early and late phase of carrageenan-induced rat paw inflammation. Br J Pharmacol 118:829–838

    CAS  PubMed  Google Scholar 

  27. Dix TA, Hess KM, Medina MA, et al (1996) Mechanism of site-selective DNA nicking by the hydrodioxyl (perhydroxyl) radical. Biochemistry 35:4578–4583

    Article  CAS  PubMed  Google Scholar 

  28. Volk T, Gerst J, Faust-Belbe G, et al (1999) Monocyte stimulation by reactive oxygen species: role of superoxide and intracellular Ca2+. Inflamm Res 48:544–549

    Article  CAS  PubMed  Google Scholar 

  29. Salvemini D, Wang ZQ, Zweier JL, et al (1999) A nonpeptidyl mimic of superoxide dismutase with therapeutic activity in rats. Science 286:304–306

    Article  CAS  PubMed  Google Scholar 

  30. Beckman JS, Beckman TW, Chen J, et al (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624

    Article  CAS  PubMed  Google Scholar 

  31. Salvemini D, Wang ZQ, Stern MK, et al (1998) Peroxynitrite decomposition catalysts: therapeutics for peroxynitrite-mediated pathology. Proc Natl Acad Sci USA 95:2659–2663

    Article  CAS  PubMed  Google Scholar 

  32. Christians ES, Yan LJ, Benjamin IJ (2002) Heat shock factor 1 and heat shock proteins: Critical partners in protection against acute cell injury. Crit Care Med 30 (suppl):S43–S50

    Article  CAS  Google Scholar 

  33. Hammerman PS, Fox CJ, Thompson CB (2004) Beginnings of a signal-transduction pathway for bioenergetic control of cell survival. Trends Biochem Sci 30:142–150

    Google Scholar 

  34. Pinsky MR (2003) Antioxidant therapy for severe sepsis: promise and perspective. Crit Care Med 31:2697–2698

    Article  PubMed  Google Scholar 

  35. Lovat R, Preiser JC (2003) Antioxidant therapy in intensive care. Curr Opin Crit Care 9:266–270.

    Article  PubMed  Google Scholar 

  36. Halliwell B (2000) The antioxidant paradox. Lancet 55:1179–1180

    Article  Google Scholar 

  37. Yu SL, Chen HW, Yang PC, et al (2004) Differential gene expression in gram-negative and gram positive sepsis. Am J Respir Crit Care Med 169:1135–1143

    Article  PubMed  Google Scholar 

  38. Chung TP, Laramie JM, Provine M, et al (2002) Functional genomics of critical illnes and injury. Crit Care Med 30(suppl):S51–S57

    Article  CAS  Google Scholar 

  39. Rabilloud T (2000) Proteome Research: Two-dimensional Gel Electrophoresis and Identification Methods. Springer Verlag, Heidelberg

    Google Scholar 

  40. Schrattenholz A (2004) Proteomics: how to control highly dynamic molecules and interpret changes correctly? Drug Discovery Today 1:1–8

    CAS  Google Scholar 

  41. Xiao GG, Wang M, Li N, et al (2003) Use of proteomics to demonstrate a hierarchical oxidative stress response to diesel exhaust particle chemicals in a macrophage cell line. J Biol Chem 278:50781–50790

    Article  CAS  PubMed  Google Scholar 

  42. Fratelli M, Demol H, Puype M, et al (2002) Identification of redox proteomics of glutathionylated proteins in oxidatively stressed human T lymphocytes. Proc Natl Acad Sci USA 99:3505–3510

    Article  CAS  PubMed  Google Scholar 

  43. Fratelli M, Demol H, Puype M, et al (2003) Identification of proteins undergoing glutathionylation in oxidatively stressed hepatocytes and hepatoma cells. Proteomics 3:1154–1161

    Article  CAS  PubMed  Google Scholar 

  44. Magi B, Ettore A, Liberatori S, et al (2004) Selectivity of protein carbonylation in the apoptotic response to oxidative stress associated with photodynamic therapy: a cell biochemical and proteomic investigation. Cell Death Differ 11:842–852

    Article  CAS  PubMed  Google Scholar 

  45. Rabilloud T, Heller M, Gasnier F, et al (2002) Proteomics analysis of cellular response to oxidative stress. J Biol Chem 277:19396–19401

    Article  CAS  PubMed  Google Scholar 

  46. Grune T, Reinheckel T, Davies KJA (1997) Degradation of oxidized proteins in mammalian cells. FASEB J 11:526–534

    CAS  PubMed  Google Scholar 

  47. Chevallet M, Wagner E, Luche S, et al (2003) Regeneration of Peroxiredoxins during Recovery after oxidative stress. J Biol Chem 278:37146–37153

    Article  CAS  PubMed  Google Scholar 

  48. Grune T, Reinheckel T, Li R, et al (2002) Proteasome-dependent turnover of protein disulfide isomerase in oxidatively stressed cells. Arch Biochem Biophys 397:407–413

    Article  CAS  PubMed  Google Scholar 

  49. Vogt JA, Hunzinger C, Schroer K, et al (2005) Determination of fractional synthesis rate of mouse hepatic proteins via metabolic 13C-labeling, MALDI-TOF MS and analysis of relative isotopologue abundances using average masses. Anal Chem 77:2034–2042

    Article  CAS  PubMed  Google Scholar 

  50. Asfar P, Brach H, Fröba G, et al (2005) Microcirculation disorders vs. mitochondrial function: the role of the mediator orchestra NO, ROS, HO-1, ATP in large animal studies. Shock 23 (suppl):85–87

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vogt, J.A., Radermacher, P., Barth, E. (2006). Oxidative Stress in Sepsis: Implications on Liver Protein Patterns and Analysis via Modified Proteomics Technology. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine. Yearbook of Intensive Care and Emergency Medicine, vol 2006. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33396-7_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-33396-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30155-4

  • Online ISBN: 978-3-540-33396-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics