Skip to main content

The Role of Toll-like Receptors in Sepsis

  • Conference paper
Yearbook of Intensive Care and Emergency Medicine

Part of the book series: Yearbook of Intensive Care and Emergency Medicine ((YEARBOOK,volume 2006))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Riedemann NC, Guo RF, Ward PA (2003) The enigma of sepsis. J Clin Invest 112:460–467

    CAS  PubMed  Google Scholar 

  2. Medzhitov R P-HP, Janeway CA Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394–397

    Article  CAS  PubMed  Google Scholar 

  3. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973–983

    Article  CAS  PubMed  Google Scholar 

  4. Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2:675–680

    Article  CAS  PubMed  Google Scholar 

  5. Lauw FN, Caffrey DR, Golenbock DT (2005) Of mice and man: TLR11 (finally) finds profilin. Trends Immunol 26:509–511

    Article  CAS  PubMed  Google Scholar 

  6. Pasare C, Medzhitov R (2003) Toll-like receptors: balancing host resistance with immune tolerance. Curr Opin Immunol 15:677–682

    Article  CAS  PubMed  Google Scholar 

  7. Raulet DH (2004) Interplay of natural killer cells and their receptors with the adaptive immune response. Nat Immunol 5:996–1002

    Article  CAS  PubMed  Google Scholar 

  8. Poltorak A HX, Smirnova I, Liu MY, et al (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088

    Article  CAS  PubMed  Google Scholar 

  9. Akira S TK (2004) Toll-like receptor signalling. Nature Rev Immunol 4:499–511

    Article  CAS  Google Scholar 

  10. Takaoka A, Yanai H, Kondo S, et al (2005) Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 434:243–249

    Article  CAS  PubMed  Google Scholar 

  11. Beutler B (2004) Inferences, questions and possibilities in Toll-like receptor signalling. Nature 430:257–263

    Article  CAS  PubMed  Google Scholar 

  12. Liew FY, Xu D, Brint EK, O’Neill LA (2005) Negative regulation of toll-like receptor-mediated immune responses. Nat Rev Immunol 5:446–458

    Article  CAS  PubMed  Google Scholar 

  13. Brint EK, Xu D, Liu H, et al (2004) ST2 is an inhibitor of interleukin 1 receptor and Toll-like receptor 4 signaling and maintains endotoxin tolerance. Nat Immunol 5:373–379

    Article  CAS  PubMed  Google Scholar 

  14. Wald D, Qin J, Zhao Z, et al (2003) SIGIRR, a negative regulator of Toll-like receptor-interleukin 1 receptor signaling. Nat Immunol 4:920–927

    Article  CAS  PubMed  Google Scholar 

  15. Divanovic S, Trompette A, Atabani SF, et al (2005) Negative regulation of Toll-like receptor 4 signaling by the Toll-like receptor homolog RP105. Nat Immunol 6:571–578

    Article  CAS  PubMed  Google Scholar 

  16. Hoshino K, Takeuchi O, Kawai T, et al (1999) Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162:3749–3752

    CAS  PubMed  Google Scholar 

  17. Knapp S WC, van’ t Veer C, Takeuchi O, Akira S, Florquin S, van der Poll T (2004) Toll-like receptor 2 plays a role in the early inflammatory response to murine pneumococcal pneumonia but does not contribute to antibacterial defense. J Immunol 172:3132–3138

    CAS  PubMed  Google Scholar 

  18. Wang X MC, Louboutin JP, Lysenko ES, Weiner DJ, Weiser JN, Wilson JM (2002) Toll-like receptor 4 mediates innate immune responses to Haemophilus influenzae infection in mouse lung. J Immunol 168:810–815

    CAS  PubMed  Google Scholar 

  19. Branger J KS, Weijer S, Leemans JC, et al (2004) Role of Toll-like receptor 4 in gram-positive and gram-negative pneumonia in mice. Infect Immun 72:788–794

    Article  CAS  PubMed  Google Scholar 

  20. Dziarski R, Wang Q, Miyake K, Kirschning CJ, Gupta D (2001) MD-2 enables Toll-like receptor 2 (TLR2)-mediated responses to lipopolysaccharide and enhances TLR2-mediated responses to Gram-positive and Gram-negative bacteria and their cell wall components. J Immunol 166:1938–1944.

    CAS  PubMed  Google Scholar 

  21. O’Brien GC, Wang JH, Redmond HP (2005) Bacterial lipoprotein induces resistance to Gram-negative sepsis in TLR4-deficient mice via enhanced bacterial clearance. J Immunol 174:1020–1026

    PubMed  Google Scholar 

  22. Armstrong L, Medford AR, Hunter KJ, Uppington KM, Millar AB (2004) Differential expression of Toll-like receptor (TLR)-2 and TLR-4 on monocytes in human sepsis. Clin Exp Immunol 136:312–319

    Article  CAS  PubMed  Google Scholar 

  23. Harter L, Mica L, Stocker R, Trentz O, Keel M (2004) Increased expression of toll-like receptor-2 and-4 on leukocytes from patients with sepsis. Shock 22:403–409

    Article  PubMed  Google Scholar 

  24. Bouchon A, Facchetti F, Weigand MA, Colonna M (2001) TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature 410:1103–1107

    Article  CAS  PubMed  Google Scholar 

  25. Knapp S, Gibot S, de Vos A, Versteeg HH, Colonna M, van der Poll T (2004) Cutting edge: expression patterns of surface and soluble triggering receptor expressed on myeloid cells-1 in human endotoxemia. J Immunol 173:7131–7134

    CAS  PubMed  Google Scholar 

  26. Gibot S, Cravoisy A, Levy B, Bene MC, Faure G, Bollaert PE (2004) Soluble triggering receptor expressed on myeloid cells and the diagnosis of pneumonia. N Engl J Med 350:451–458

    Article  CAS  PubMed  Google Scholar 

  27. Gibot S, Kolopp-Sarda MN, Bene MC, et al (2004) Plasma level of a triggering receptor expressed on myeloid cells-1: its diagnostic accuracy in patients with suspected sepsis. Ann Intern Med 141:9–15

    CAS  PubMed  Google Scholar 

  28. Gibot S, Kolopp-Sarda MN, Bene MC, et al (2004) A soluble form of the triggering receptor expressed on myeloid cells-1 modulates the inflammatory response in murine sepsis. J Exp Med 200:1419–1426

    Article  CAS  PubMed  Google Scholar 

  29. Hamerman JA, Tchao NK, Lowell CA, Lanier LL (2005) Enhanced Toll-like receptor responses in the absence of signaling adaptor DAP12. Nat Immunol 6:579–586

    Article  CAS  PubMed  Google Scholar 

  30. Roger T, David J, Glauser MP, Calandra T (2001) MIF regulates innate immune responses through modulation of Toll-like receptor 4. Nature 414:920–924

    Article  CAS  PubMed  Google Scholar 

  31. Calandra T, Echtenacher B, Roy DL, et al (2000) Protection from septic shock by neutralization of macrophage migration inhibitory factor. Nat Med 6:164–170

    Article  CAS  PubMed  Google Scholar 

  32. Bozza FA, Gomes RN, Japiassu AM, et al (2004) Macrophage migration inhibitory factor levels correlate with fatal outcome in sepsis. Shock 22:309–313

    Article  CAS  PubMed  Google Scholar 

  33. Al-Abed Y, Dabideen D, Aljabari B, et al (2005) ISO-1 binding to the tautomerase active site of MIF inhibits its pro-inflammatory activity and increases survival in severse sepsis. J Biol Chem

    Google Scholar 

  34. Sunden-Cullberg J, Norrby-Teglund A, Rouhiainen A, et al (2005) Persistent elevation of high mobility group box-1 protein (HMGB1) in patients with severe sepsis and septic shock. Crit Care Med 33:564–573

    Article  CAS  PubMed  Google Scholar 

  35. Wang H, Bloom O, Zhang M, et al (1999) HMG-1 as a late mediator of endotoxin lethality in mice. Science 285:248–251

    Article  CAS  PubMed  Google Scholar 

  36. Park JS, Svetkauskaite D, He Q, et al (2004) Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 279:7370–7377

    Article  CAS  PubMed  Google Scholar 

  37. Agnese DM CJ, Hahm SJ, Coyle SM, Corbett SA, Calvano SE, Lowry SF (2002) Human toll-like receptor 4 mutations but not CD14 polymorphisms are associated with an increased risk of gram-negative infections. J Infect Dis 186:1522–1525

    Article  CAS  PubMed  Google Scholar 

  38. Read RC, Pullin J, Gregory S, et al (2001) A functional polymorphism of toll-like receptor 4 is not associated with likelihood or severity of meningococcal disease. J Infect Dis 184:640–642

    Article  CAS  PubMed  Google Scholar 

  39. Arbour NC, Lorenz E, Schutte BC, et al (2000) TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet 25:187–191

    Article  CAS  PubMed  Google Scholar 

  40. Lorenz E, Mira JP, Frees KL, Schwartz DA (2002) Relevance of mutations in the TLR4 receptor in patients with gram-negative septic shock. Arch Intern Med 162:1028–1032

    Article  CAS  PubMed  Google Scholar 

  41. Lorenz E, Mira JP, Cornish KL, Arbour NC, Schwartz DA (2000) A novel polymorphism in the toll-like receptor 2 gene and its potential association with staphylococcal infection. Infect Immun 68:6398–6401

    Article  CAS  PubMed  Google Scholar 

  42. Sutherland AM, Walley KR, Russell JA (2005) Polymorphisms in CD14, mannose-binding lectin, and Toll-like receptor-2 are associated with increased prevalence of infection in critically ill adults. Crit Care Med 33:638–644

    Article  CAS  PubMed  Google Scholar 

  43. Nakada TA, Hirasawa H, Oda S, et al (2005) Influence of Toll-like receptor 4, CD14, tumor necrosis factor, and interleukin-10 gene polymorphisms on clinical outcome in Japanese critically ill patients. J Surg Res. Epub ahead of print, Jul 26

    Google Scholar 

  44. Wang JE (2005) Can single nucleotide polymorphisms in innate immune receptors predict development of septic complications in intensive care unit patients? Crit Care Med 33:695–696

    Article  PubMed  Google Scholar 

  45. Ulevitch RJ (2004) Therapeutics targeting the innate immune system. Nat Rev Immunol 4:512–520

    Article  CAS  PubMed  Google Scholar 

  46. Meng G, Rutz M, Schiemann M, et al (2004) Antagonistic antibody prevents toll-like receptor 2-driven lethal shock-like syndromes. J Clin Invest 113:1473–1481

    CAS  PubMed  Google Scholar 

  47. Bochud PY, Calandra T (2003) Pathogenesis of sepsis: new concepts and implications for future treatment. BMJ 326:262–266

    Article  CAS  PubMed  Google Scholar 

  48. Reinhart K, Gluck T, Ligtenberg J, et al (2004) CD14 receptor occupancy in severe sepsis: results of a phase I clinical trial with a recombinant chimeric CD14 monoclonal antibody (IC14). Crit Care Med 32:1100–1108

    Article  CAS  PubMed  Google Scholar 

  49. Krieg AM (2003) CpG motifs: the active ingredient in bacterial extracts? Nat Med 9:831–835

    Article  CAS  PubMed  Google Scholar 

  50. Wongratanacheewin S, Kespichayawattana W, Intachote P, et al (2004) Immunostimulatory CpG oligodeoxynucleotide confers protection in a murine model of infection with Burkholderia pseudomallei. Infect Immun 72:4494–4502

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wiersinga, W.J., van der Poll, T. (2006). The Role of Toll-like Receptors in Sepsis. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine. Yearbook of Intensive Care and Emergency Medicine, vol 2006. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33396-7_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-33396-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30155-4

  • Online ISBN: 978-3-540-33396-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics