Skip to main content

Edge Contamination Effects in the Dynamics of Vortex Matter in Superconductors: Memory Effects and Excess Flux-flow Noise

  • Chapter
Jamming, Yielding, and Irreversible Deformation in Condensed Matter

Part of the book series: Lecture Notes in Physics ((LNP,volume 688))

Abstract

The magnetic flux line lattice in type II superconductors serves as a useful system in which to study condensed matter flow, as its dynamic properties are tunable. Recent studies have shown a number of puzzling phenomena associated with vortex motion, including: low-frequency noise and slow voltage oscillations; a history-dependent dynamic response, and memory of the direction, amplitude duration and frequency of the previously applied current; high vortex mobility for alternating current, but no apparent vortex motion for direct currents; negative resistance and strong suppression of an a.c. response by small d.c. bias. A generic edge contamination mechanism that comprehensively accounts for these observations is based on a competition between the injection of a disordered vortex phase at the sample edges, and the dynamic annealing of this metastable disorder by the transport current. For an alternating current, only narrow regions near the edges are in the disordered phase, while for d.c. bias, most of the sample is in the disordered phase-preventing vortex motion because of more efficient pinning. The resulting spatial dependence of the disordered vortex system serves as an active memory of the previous history. Random injection of the strongly pinned metastable disordered vortex phase through the sample edges and its subsequent random annealing into the weakly pinned ordered phase in the bulk results in large critical current fluctuations causing strong vortex velocity fluctuations. The resulting excess low frequency flux-flow voltage noise displays pronounced reentrant behavior. In the Corbino geometry the injection of the metastable phase is prevented and, accordingly, the excess noise is absent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Blatter, M. V. Feigelman, V. B. Geshkenbein, A. I. Larkin, V. M. Vinokur: Rev. Mod. Phys.66, 1125 (1994).

    Article  ADS  Google Scholar 

  2. G. W. Crabtree and D. R. Nelson: Phys. Today 50, 38 (1997).

    Article  Google Scholar 

  3. S. Kuriki, S. Hirano, A. Maeda, T. Kiss: Topics in Appl. Phys. 91, 5 (2003).

    Google Scholar 

  4. G. W. Crabtree: Nature Mat. 2,435 (2003).

    Article  ADS  Google Scholar 

  5. Y. Paltiel, E. Zeldov, Y. N. Myasoedov, H. Shtrikman, S. Bhattacharya, M. J. Higgins, Z. L. Xiaok, E. Y. Andrei, P. L. Gammel and D. J. Bishop: Nature 403, 398 (2000).

    Article  ADS  Google Scholar 

  6. Y. Paltiel, E. Zeldov, Y. Myasoedov, M. L. Rappaport, G. Jung, S. Bhattacharya, M. J. Higgins, Z. L. Xiao, E. Y. Andrei, P. L. Gammiel, and D. J. Bishop: Phys. Rev. Lett. 85, 3712 (2000).

    Article  ADS  Google Scholar 

  7. M. Marchevsky, M. J. Higgins, and S. Battacharya: Phys. Rev. Lett. 88, 087002 (2002).

    Article  ADS  Google Scholar 

  8. S. Bhattacharya and M. J. Higgins: Phys. Rev. B 52, 64 (1995).

    Article  ADS  Google Scholar 

  9. W. Henderson, E. Y. Andrei, M. J. Higgins, and S. Bhattacharya: Phys. Rev. Lett. 77, 2077 (1996).

    Article  ADS  Google Scholar 

  10. Song Yue, Bo Zhang, Shun Tan, Mingliang Tian and Yuheng Zhang: Europhys. Lett. 66, 272 (2004).

    Article  ADS  Google Scholar 

  11. M. Menghini, Y. Fasano and F. de la Cruz: Phys. Rev. B 65, 064510 (2002).

    Article  ADS  Google Scholar 

  12. P. Benetatos and M. C. Marchetti: Phys. Rev. B 65, 134517 (2002).

    Article  ADS  Google Scholar 

  13. S. Okuma and M. Kamada: Phys. Rev. B 70, 014509 (2004).

    Article  ADS  Google Scholar 

  14. Y. Paltiel, E. Zeldov, G. Jung, Y. Myasoedov, M. L. Rappaport, D. Feldman, M. J. Higgins, and S. Bhattacharya: Phys. Rev. B 66, 060503R (2002).

    Article  ADS  Google Scholar 

  15. M. Gitterman: Phys. Rev. E 70, 036116 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  16. B. Y. Shapiro, M. Gitterman, I. Shapiro: Physica C 388, 681 (2003).

    Article  ADS  Google Scholar 

  17. K. Ghosh, S. Ramakrishnan, A. K. Grover, Gautam I. Menon, Girish Chandra, T. V. Chandrasekhar Rao, G. Ravikumar, P. K. Mishra, V. C. Sahni, C. V. Tomy, G. Balakrishnan, D. Mck Paul, S. Bhattacharya: Phys. Rev. Lett. 76, 4600 (1996).

    Article  ADS  Google Scholar 

  18. S. S. Banerjee, N. G. Patil, S. Ramakrishnan, A. K. Grover, S. Bhattacharya, P. K. Mishra, G. Ravikumar, T. V. Chandrasekhar Rao, V. C. Sahni, M. J. Higgins, C. V. Tomy. G. Balakrishnan, and D. Mck. Paul: Europhys. Lett. 44, 91 (1998).

    Article  ADS  Google Scholar 

  19. A. C. Marley, M. J. Higgins, and S. Bhattacharya: Phys. Rev. Lett. 74, 3029 (1995).

    Article  ADS  Google Scholar 

  20. R. D. Merithew, M. W. Rabin, M. B. Weissman, M. J. Higgins and S. Bhattacharya: Phys. Rev. Lett. 77, 3197 (1996).

    Article  ADS  Google Scholar 

  21. S. S. Banerjee, N. G. Patil, S. Saha, S. Ramakrishnan, A. K. Grover, S. Bhattacharya, G. Ravikumar, P. K. Mishra, T. V. Chandrasekhar Rao, V. C. Sahni, M. J. Higgins, E. Yamamoto, Y. Haga, M. Hedo, Y. Inada, Y. Onuki: Phys. Rev. B 58, 995 (1999).

    Article  ADS  Google Scholar 

  22. S. S. Banerjee, N. G. Patil, S. Ramakrishnan, A. K. Grover, S. Bhattacharya, G. Ravikumar, P. K. Mishra, T. V. Chandrasekhar Rao, and V. C. Sahni, M. J. Higgins: Appl. Phys. Lett. 74, 126 (1999).

    Article  ADS  Google Scholar 

  23. Y. Liu, H. Luo, X. Leng, Z. H. Wang, L. Qiu, S. Y. Ding, and L. Z. Lin: Phys. Rev. B 66, 144510 (2002).

    Article  ADS  Google Scholar 

  24. W. Henderson, E. Y. Andrei and M. J. Higgins: Phys. Rev. Lett. 81, 2352 (1998).

    Article  ADS  Google Scholar 

  25. Z. L. Xiao, E. Y. Andrei and M. J. Higgins: Phys. Rev. Lett. 83, 1664 (1999).

    Article  ADS  Google Scholar 

  26. R. Schleser, P. J. E. M. van der Linden, P. Wyder, A. Gerber: Phys. Rev. B 67, 134516 (2003).

    Article  ADS  Google Scholar 

  27. S. N. Gordeev, P. A. J. deGroot, M. Oussena, A. V. Volkozub, S. Pinfold, R. Langan, R. Gagnon, L. Taillefer: Nature 385, 324 (1997).

    Article  ADS  Google Scholar 

  28. W. K. Kwok, G. W. Crabtree, J. A. Fendrich, L. M. Paulius: Physica C 293, 111 (1997).

    Article  ADS  Google Scholar 

  29. G. D’Anna, P. L. Gammel, H. Safar, G. B. Alers, D. J. Bishop, J. Giapintzakis, D. M. Ginsberg: Phys. Rev. Lett. 75, 3521 (1995).

    Article  ADS  Google Scholar 

  30. T. Tsuboi, T. Hanaguri, and A. Maeda: Phys. Rev. Lett. 80, 4550 (1998).

    Article  ADS  Google Scholar 

  31. Y. Togawa, R. Abiru, K. Iwaya, H. Kitano, and A. Maeda: Phys. Rev. Lett. 85, 3716 (2000).

    Article  ADS  Google Scholar 

  32. A. Maeda, T. Tsuboi, R. Abiru, Y. Togawa, H. Kitano, K. Iwaya, T. Hanaguri: Phys. Rev. B 65, 054506 (2002).

    Article  ADS  Google Scholar 

  33. S. Kokkaliaris, P. A. J. de Groot, S. N. Gordeev, A. A. Zhukov, R. Gagnon and L. Taillefer: Phys. Rev. Lett. 82, 5116 (1999).

    Article  ADS  Google Scholar 

  34. Y. Paltiel, D. T. Fuchs, E. Zeldov, Y. N. Myasoedov, H. Shtrikman, M. L. Rappaport, E. Y. Andrei: Phys. Rev. B 58, R14763 (1998).

    Article  ADS  Google Scholar 

  35. D. T. Fuchs, E. Zeldov, M. Rappaport, T. Tamegai, S. Ooi, H. Shtrikman: Nature 391, 373 (1998).

    Article  ADS  Google Scholar 

  36. S. Bhattacharya, J. P. Stokes, Mark O. Robbins, and R. A. Klemm: Phys. Rev. Lett. 54, 2453 (1985).

    Article  ADS  Google Scholar 

  37. Yuan P. Li, T. Sajoto, L. W. Engel, D. C. Tsui, and M. Shayegan: Phys. Rev. Lett. 67, 1630 (1991).

    Article  ADS  Google Scholar 

  38. J. R. Clem: Phys. Rep. 75, 1 (1981).

    Article  ADS  Google Scholar 

  39. W. J. Yeh and Y. H. Kao: Phys. Rev. B 44, 360 (1991).

    Article  ADS  Google Scholar 

  40. V. D. Ashkenazy, G. Jung, and B. Ya. Shapiro: Physica C 254, 77 (1995).

    Article  ADS  Google Scholar 

  41. K. E. Gray:, Phys. Rev. B 57, 5524 (1998).

    Article  ADS  Google Scholar 

  42. B. Placais, P. Mathieu, and Y. Simon: Phys. Rev. Lett. 70, 1521 (1993)

    Article  ADS  Google Scholar 

  43. B. Placais, P. Mathieu, and Y. Simon: Phys. Rev. B 49, 15813 (1994).

    Article  ADS  Google Scholar 

  44. P. J. M. Wöltgens, C. Dekker, S. W. A. Gielkens, and H. W. de Wijn: Physica C 247, 67 (1995).

    Article  ADS  Google Scholar 

  45. M. W. Rabin, R. D. Merithew, M. B. Weissman, M. J. Higgins and S. Bhattacharya: Phys. Rev. B 57, R720 (1998).

    Article  ADS  Google Scholar 

  46. H. Safar, P. L. Gammel, D. A. Huse, G. B. Alers, D. J. Bishop, W. C. Lee, J. Giapintzakis, and D. M. Ginsberg: Phys. Rev. B 52, 6211 (1995).

    Article  ADS  Google Scholar 

  47. S. Okuma and N. Kokubo: Phys. Rev. B 61, 671 (2000).

    Article  ADS  Google Scholar 

  48. I. Aranson and V. Vinokur: Phys. Rev. Lett. 77, 3208 (1996).

    Article  ADS  Google Scholar 

  49. C. J. Olson, C. Reichhardt, and F. Nori: Phys. Rev. Lett. 80, 2197 (1998).

    Article  ADS  Google Scholar 

  50. A. B. Kolton, D. Dominguez, and N. Gronbech-Jensen et al: Phys. Rev. Lett. 83, 3061 (1999).

    Article  ADS  Google Scholar 

  51. M. C. Marchetti, A. A. Middleton, and T. Prellberg: Phys. Rev. Lett. 85, 1104 (2000).

    Article  ADS  Google Scholar 

  52. Y. Paltiel, G. Jung, Y. Myasoedov, M. L. Rappaport, E. Zeldov, S. Bhattacharya, M. J. Higgins: Europhys. Lett. 58, 112 (2002).

    Article  ADS  Google Scholar 

  53. Y. Paltiel et al: Europhys. Lett. 66, 412 (2004)

    Article  ADS  Google Scholar 

  54. E. Zeldov, D. Majer, M. Konczykowski, V. B. Geshkenbein, V. M. Vinokur, H. Shtrikman: Nature 375, 373 1995.

    Article  ADS  Google Scholar 

  55. N. Avraham, B. Khaykovich, Y. Myasoedov, M. Rappaport, H. Shtrikman, D. E. Feldman, T. Tamegai, P. H. Kes, M. Li, M. Konczykowski, K. van der Beek, E. Zeldov: Nature 411, 451 2001.

    Article  ADS  Google Scholar 

  56. G. Ravikumar, P. K. Mishra, V. C. Sahni, S. S. Banerjee, S. Ramakrishnan, A. K. Grover, P. L. Gammel, D. J. Bishop, E. Bucher, M. J. Higgins and S. Bhattacharya: Physica C 332, 145 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Jung, G. et al. (2006). Edge Contamination Effects in the Dynamics of Vortex Matter in Superconductors: Memory Effects and Excess Flux-flow Noise. In: Miguel, M.C., Rubi, M. (eds) Jamming, Yielding, and Irreversible Deformation in Condensed Matter. Lecture Notes in Physics, vol 688. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33204-9_7

Download citation

Publish with us

Policies and ethics