Skip to main content

Jamming and Yielding of Dislocations: from Crystal Plasticity to Superconducting Vortex Flow

  • Chapter

Part of the book series: Lecture Notes in Physics ((LNP,volume 688))

Abstract

We discuss the statistical properties of interacting dislocations in plastically deformed crystals. Due to their long-range mutual interactions, dislocations arrange into jammed configurations, that can be set into motion under the action of an external stress. Disorder provides an additional source of pinning which we study by scaling theories, considering the case of parallel arrays of dislocations in a pileup or a low angle grain boundaries. As an application of these ideas, we discuss the plastic yielding of a vortex lattice in the Corbino disk and the growth of a vortex polycrystal in a field cooling experiment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Friedel, Dislocations (Pergamon Press, Oxford, 1967).

    MATH  Google Scholar 

  2. A. H. Cottrell, Dislocations and Plastic Flow in Crystals (Oxford University Press, London, 1953).

    MATH  Google Scholar 

  3. J. P. Hirth and J. Lothe, Theory of Dislocations (Krieger Publishing Company, 1992).

    Google Scholar 

  4. F. R. N. Nabarro, Theory of Crystal Dislocations (Dover, New York, 1992).

    Google Scholar 

  5. M.-C. Miguel, A. Vespignani, S. Zapperi, J. Weiss and J. R. Grasso, Nature 410, 667 (2001).

    Article  ADS  Google Scholar 

  6. C. Murray, C. Kagan, and M. Bawendi, Ann. Rev. Mat. Sci. 30, 545 (2000).

    Article  ADS  Google Scholar 

  7. T. B. Mitchell et al., J. J. Bollinger, W. M. Itano and D. H. E. Dubin, Phys. Rev. Lett. 87 183001 (2001).

    Article  ADS  Google Scholar 

  8. Pertsinidis A. and Ling X. S., Nature 413, 47 (2001).

    Article  Google Scholar 

  9. G. Blatter et al., Rev. Mod. Phys. 66, 1125 (1994).

    Article  ADS  Google Scholar 

  10. E. H. Brandt, Rep. Prog. Phys. 58, 1465 (1995).

    Article  ADS  Google Scholar 

  11. T. Giamarchi and S. Bhattacharya, in “High Magnetic Fields: Applications in Condensed Matter Physics and Spectroscopy”, p. 314, C. Berthier et al. eds., (Springer-Verlag, Berlin, 2002).

    Google Scholar 

  12. A. A. Abrikosov, Zh. Eksp. Teor. Fiz. 32, 1442 (1957).

    Google Scholar 

  13. H. Safar, P. L. Gammel, D. A. Huse, D. J. Bishop, J. P. Rice, and D. Ginsberg, Phys. Rev. Lett. 69, 824 (1992).

    Article  ADS  Google Scholar 

  14. S. Bhattacharya and M. J. Higgins, Phys. Rev. Lett. 70, 2617 (1993).

    Article  ADS  Google Scholar 

  15. J. Weiss, J. R. Grasso, M. C. Miguel, A. Vespignani and S. Zapperi, Mat. Sci. and Eng. A 309–310, 321 (2001).

    Article  Google Scholar 

  16. J. Weiss and D. Marsan, Science 299, 89 (2003).

    Article  ADS  Google Scholar 

  17. J. Weiss, F. Lahaie and J. R.Grasso, J. Geophys. Res. 105, 433 (2000).

    Article  ADS  Google Scholar 

  18. E. N. da C. Andrade, Proc. R. Soc. London A 84, 1 (1910); 90, 329 (1914).

    Article  ADS  Google Scholar 

  19. N. F. Mott, Phil. Mag. 44, 741 (1953).

    Google Scholar 

  20. A. H. Cottrell, Phil. Mag. Lett. 73, 35 (1996); 74, 375 (1996); 75, 301 (1997).

    Article  ADS  Google Scholar 

  21. F. R. N. Nabarro, Phil. Mag. Lett. 75, 227 (1997).

    Article  ADS  Google Scholar 

  22. M. Z. Butt and P. Feltham, J. Mat. Sci. 28, 2557 (1993).

    Article  ADS  Google Scholar 

  23. H. Neuhäuser, Phys. Scr. T49 412 (1993).

    Article  ADS  Google Scholar 

  24. R. Labusch, Phys. Status Solidi 41, 659 (1970); Acta Metall. 20, 917 (1972).

    Article  Google Scholar 

  25. R. Labusch, Cryst. Lattice Defects 1, 1 (1969).

    Google Scholar 

  26. A. I. Lar’kin and Yu. N. Ovchinnikov, J. Low Temp. Phys. 34, 409 (1979).

    Article  ADS  Google Scholar 

  27. Y. Paltiel, E. Zeldov, Y. N. Myasoedov, H. Shtrikman, S. Bhattacharya, M. J. Higgins, Z. L. Xiao, E. Y. Andrei, P. L. Gammel, D. J. Bishop, Nature 403, 398 (2000); Y. Paltiel, E. Zeldov, Y. Myasoedov, M. L. Rappaport, G. Jung, S. Bhattacharya, M. J. Higgins, Z. L. Xiao, E. Y. Andrei, P. L. Gammel, and D. J. Bishop, Phys. Rev. Lett. 85, 3712 (2000).

    Article  ADS  Google Scholar 

  28. G. W. Crabtree, D. López, W. K. Kwok, H. Safar, L. M. Paulius, J. Low. Temp. Phys. 117, 1313 (1999).

    Article  Google Scholar 

  29. G. D’Anna, P. L. Gammel, A. P. Ramirez, U. Yaron, C. S. Oglesby, E. Bucher, and D. J. Bishop, Phys. Rev. B 54, 6583 (1996).

    Article  ADS  Google Scholar 

  30. D. Lopez, W. K. Kwok, H. Safar, R. J. Olsson, A. M. Petrean, L. Paulius, and G. W. Crabtree, Phys. Rev. Lett. 82, 1277 (1999).

    Article  ADS  Google Scholar 

  31. M. C. Miguel, A. Vespignani, S. Zapperi, J. Weiss and J. R. Grasso, Mat. Sci. and Eng. A 309–310, 324 (2001).

    Article  Google Scholar 

  32. M. C. Miguel, A. Vespignani, M. Zaiser and S. Zapperi, Phys. Rev. Lett. 89, 165501 (2002).

    Article  ADS  Google Scholar 

  33. A. J. Liu and S. R. Nagel, Nature 396, 21 (1998).

    Article  ADS  Google Scholar 

  34. A. J. Liu and S. R. Nagel (Eds.), Jamming and Rheology, (Taylor and Francis, London, 2001).

    Google Scholar 

  35. W. K. Kegel and A. van Blaaderen, Science 287, 290 (2000).

    Article  ADS  Google Scholar 

  36. E. Weeks et al., Science 287, 627 (2000).

    Article  ADS  Google Scholar 

  37. M.-C. Miguel and S. Zapperi, Nat. Mater. 2, 477 (2003).

    Article  ADS  Google Scholar 

  38. A. J. E. Foreman, Phil. Mag. 15 (1967) 1011.

    Article  ADS  Google Scholar 

  39. T. Nattermann, S. Stepanow, L. H. Tang, and H. Leschhorn J. Phys. II (France) 2, 1483 (1992).

    Article  Google Scholar 

  40. H. Leschhorn, T. Nattermann, S. Stepanow, and L. H. Tang, Ann. Physik 6, 1 (1997).

    Article  ADS  Google Scholar 

  41. O. Narayan and D. S. Fisher, Phys. Rev. B 48, 7030 (1993).

    Article  ADS  Google Scholar 

  42. P. Chauve, T. Giamarchi, and P. Le Doussal Phys. Rev. B 62, 6241 (2000).

    Article  ADS  Google Scholar 

  43. P. Le Doussal, K. J. Wiese, and P. Chauve Phys. Rev. B 66, 174201 (2002).

    Article  ADS  Google Scholar 

  44. S. Zapperi and M. Zaiser, Mat. Sci. and Eng. A 309–310, 348 (2001).

    Article  Google Scholar 

  45. P. Moretti, M.-C. Miguel, M. Zaiser and S. Zapperi, Phys. Rev. B 69, 214103 (2004).

    Article  ADS  Google Scholar 

  46. D. Ertas and M. Kardar, Phys. Rev. E 49, R2532 (1994).

    Article  ADS  Google Scholar 

  47. J. Schmittbuhl, S. Roux, J. P. Villotte, and K. J. Maloy, Phys. Rev. Lett. 74, 1787 (1995).

    Article  ADS  Google Scholar 

  48. S. Ramanathan and D. Fisher, Phys. Rev. Lett. 79, 877 (1997); Phys. Rev. B 58, 6026 (1998).

    Article  ADS  Google Scholar 

  49. M. Kardar, Phys. Rep. 301 85 (1998).

    Article  ADS  Google Scholar 

  50. P. M. Hazzledine and R. D. J. Oldershaw, Phil. Mag. A 61, 579 (1990).

    Article  ADS  Google Scholar 

  51. D. L. Olgaard and B. Evans, J. Am. Ceram. Soc. 69, C-272 (1986).

    Article  Google Scholar 

  52. M. Miodownik M. E. A. Holm and G. M. Hassold, Scripta Mater.42, 1173 (2000).

    Article  Google Scholar 

  53. P. Moretti, M.-C. Miguel, M. Zaiser and S. Zapperi, Phys. Rev. Lett. 92, 257004 (2004).

    Article  ADS  Google Scholar 

  54. P. Moretti, M.-C. Miguel, and S. Zapperi, Phys. Rev. B 72, 014505 (2005).

    Article  ADS  Google Scholar 

  55. I. V. Grigor’eva, Sov. Phys. JETP 69, 194 (1989)

    Google Scholar 

  56. E. Schneider, J. Low. Temp. Phys. 31, 375 (1978).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Zapperi, S., Miguel, M.C., Moretti, P., Zaiser, M. (2006). Jamming and Yielding of Dislocations: from Crystal Plasticity to Superconducting Vortex Flow. In: Miguel, M.C., Rubi, M. (eds) Jamming, Yielding, and Irreversible Deformation in Condensed Matter. Lecture Notes in Physics, vol 688. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33204-9_11

Download citation

Publish with us

Policies and ethics