Skip to main content

Mixing, Ergodicity and the Fluctuation-Dissipation Theorem in Complex Systems

  • Chapter
Jamming, Yielding, and Irreversible Deformation in Condensed Matter

Part of the book series: Lecture Notes in Physics ((LNP,volume 688))

Abstract

Complex systems such as glasses, gels, granular materials, and systems far from equilibrium exhibit violation of the ergodic hypothesis (EH) and of the fluctuation-dissipation theorem (FDT). Recent investigations in systems with memory [1] have established a hierarchical connection between mixing, the EH and the FDT. They have shown that a failure of the mixing condition (MC) will lead to the subsequent failures of the EH and of the FDT. Another important point is that such violations are not limited to complex systems: simple systems may also display this feature. Results from such systems are analytical and obviously easier to understand than those obtained in complex structures, where a large number of competing phenomena are present. In this work, we review some important requirements for the validity of the FDT and its connection with mixing, the EH and anomalous diffusion in onedimensional systems. We show that when the FDT fails, an out-of-equilibrium system relaxes to an effective temperature different from that of the heat reservoir. This effective temperature is a signature of metastability found in many complex systems such as spin-glasses and granular materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. V. L. Costa, R. Morgado, M. V. B. T. Lima, and F. A. Oliveira. The Fluctuation-Dissipation Theorem fails for fast superdiffusion. Europhys. Lett., 63:173, 2003.

    Article  ADS  Google Scholar 

  2. L. Boltzmann. On the Development of the Methods of Theoretical Physics in Recent Times. In Theoretical Physics and Philosophical Problems: Selected Writings. Kluwer Academic Publishers, 1974.

    Google Scholar 

  3. R. Kubo. Fluctuation-Dissipation theorem. Rep. Prog. Phys., 29:255, 1966.

    Article  MATH  ADS  Google Scholar 

  4. R. Kubo, M. Toda, and N. Hashitsume. Statistical Physics II. Springer, Berlin, 1991.

    MATH  Google Scholar 

  5. L. Bellon, L. Buisson, M. Ciccotti, S. Ciliberto, and F. Douarche. Thermal noise properties of two aging materials, cond-mat/0501324, 2005.

    Google Scholar 

  6. G. Parisi. Off-Equilibrium Fluctuation-Dissipation Relation in Fragile Glasses. Phys. Rev. Lett., 79:3660, 1997.

    Article  ADS  Google Scholar 

  7. W. Kauzmann. The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev., 43:219, 1948.

    Article  Google Scholar 

  8. I. Santamaría-Holek, D. Reguera, and J. M. Rubí. Diffusion in stationary flow from mesoscopic nonequilibrium thermodynamics. Phys. Rev. E, 63:051106, 2001.

    Article  ADS  Google Scholar 

  9. F. Ricci-Tersenghi, D. A. Stariolo, and J. J. Arenzon. Two Time Scales and Violation of the Fluctuation-Dissipation Theorem in a Finite Dimensional Model for Structural Glasses. Phys. Rev. Lett., 84:4473, 2000.

    Article  ADS  Google Scholar 

  10. R. Exartier and L. Peliti. Measuring effective temperatures in out-of-equilibrium driven systems. Eur. Phys. J. B, 16:119, 2000.

    Article  ADS  Google Scholar 

  11. T. S. Grigera and N. E. Israeloff. Observation of Fluctuation-Dissipation-Theorem Violations in a Structural Glass. Phys. Rev. Lett., 83:5038, 1999.

    Article  ADS  Google Scholar 

  12. J. D. Bao. Comment on “The Fluctuation-Dissipation Theorem fails for fast superdiffusion” by IVL Costa et al. Europhys. Lett, 67:1050–1051, 2004.

    Article  ADS  Google Scholar 

  13. I. V. L. Costa, R. Morgado, M. V. B. T. Lima, and F. A. Oliveira. Comment on “The Fluctuation-Dissipation Theorem fails for fast superdiffusion” – Reply. Europhys. Lett., 67:1052, 2004.

    Article  ADS  Google Scholar 

  14. R. Brown. A brief account of microscopical observations made in the months on june, july, and august, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Phil. Mag., 4:161, 1828.

    Google Scholar 

  15. R. Brown. Ann. Phys. Chem. B, 14:294, 1828.

    Article  ADS  Google Scholar 

  16. A. Einstein. Investigation on the theory of the Brownian Movement. Dover, New York, 1956.

    Google Scholar 

  17. W. Sutherland. A dynamical theory of diffusion for non-elecrolytes and the molecular mass of albumin. Phil. Mag., 9:781–785, 1905.

    Google Scholar 

  18. A. Pais. Subtle Is the Lord: The Science and the Life of Albert Einstein. Oxford University Press University Press, Oxford, 1983.

    MATH  Google Scholar 

  19. J. C. Dyre and T. B. Schroder. Universality of AC conduction in disordered solids. Rev. Mod. Phys., 72:873, 2000.

    Article  ADS  Google Scholar 

  20. F. A. Oliveira, R. Morgado, A. Hansen, and J. M. Rubi. Superdiffusive conduction: Ac conductivity with correlated noise. Physica A, 357:115–121, 2005.

    Article  ADS  Google Scholar 

  21. M. von Smoluchowski. Zur kinetischen Theorie der Brownschen Molekularbe-wegung und der Suspensionen. Ann. Phys., 21:756, 1906.

    Article  MATH  Google Scholar 

  22. P. Langevin. Sur la theorie du mouvement brownien. Comptes Rendus, 146:530, 1908.

    MATH  Google Scholar 

  23. R. Toussaint, G. Helgesen, and E. G. Flekkøy. Dynamic Roughening and Fluctuations of Dipolar Chains. Phys. Rev. Lett., 93:108304, 2004.

    Article  ADS  Google Scholar 

  24. F. A. Oliveira and P. L. Taylor. Breaking in polymer-chains. 2. The Lennard-Jones chain. J. Chem. Phys., 101:10118, 1994.

    Article  ADS  Google Scholar 

  25. F. A. Oliveira and J. A. Gonzalez. Bond-stability criterion in chain dynamics. Phys. Rev. B, 54:3954, 1996.

    Article  ADS  Google Scholar 

  26. F. A. Oliveira. Transition-state analysis for fracture nucleation in polymers: The Lennard-Jones chain. Phys. Rev. B, 57:10576, 1998.

    Article  ADS  Google Scholar 

  27. A. M. Maroja, F. A. Oliveira, M. Ciesla, and L. Longa. Polymer fragmentation in extensional flow. Phys. Rev. E, 63:061801, 2001.

    Article  ADS  Google Scholar 

  28. C. L. Dias, M. Dube, F. A. Oliveira, and M. Grant. Scaling in force spectroscopy of macromolecules. Phys. Rev. E, 72:011918, 2005.

    Article  ADS  Google Scholar 

  29. A. Rahman, K. S. Singwi, and A. Sjölander. Stochastic model of a liquid and cold neutron scattering, ii. Phys. Rev., 126:997, 1962.

    Article  MATH  ADS  Google Scholar 

  30. R. M. Yulmetyev, A. V. Mokshin, and P. Hänggi. Diffusion time-scale invariance, randomization processes and memory effects in Lennard-Jones liquid. Phys. Rev. E, 68:051201, 2003.

    Article  ADS  Google Scholar 

  31. J. M. Sancho, A. M. Lacasta, K. Lindenberg, I. M. Sokolov, and A. H. Romero. Diffusion on a Solid Surface: Anomalous is Normal. Phys. Rev. Lett., 92:250601, 2004.

    Article  ADS  Google Scholar 

  32. J. D. Bao and Y. Zhuo. Comment on “Diffusion on a solid surface: Anomalous is normal”. Phys. Rev. Lett., 94:188901, 2005.

    Article  ADS  Google Scholar 

  33. J. M. Sancho, A. M. Lacasta, K. Lindenberg, and A. H. Romero. Comment on “Diffusion on a solid surface: Anomalous is normal”– Reply. Phys. Rev. Lett., 94:188902, 2005.

    Article  ADS  Google Scholar 

  34. J. D. Bao and Y. Z. Zhuo. Ballistic diffusion induced by a thermal broadband noise. Phys. Rev. Lett., 91:138104, 2003.

    Article  ADS  Google Scholar 

  35. J. D. Bao. Transport in a flashing ratchet in the presence of anomalous diffusion. Phys. Lett. A, 314:203, 2003.

    Article  ADS  Google Scholar 

  36. M. Ciesla, S. P. Dias, L. Longa, and F. A. Oliveira. Synchronization induced by Langevin dynamics. Phys. Rev. E, 63:065202(R), 2001.

    Article  ADS  Google Scholar 

  37. H. B. Callen and T. A. Welton. Irreversibility and generalized noise. Phys. Rev., 83:34, 1951.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. V. V. Belyi. Fluctuation-dissipation-dispersion relation and quality factor for slow processes. Phys. Rev. E, 69:017104, 2004.

    Article  ADS  Google Scholar 

  39. R. Kubo, M. Yokota, and S. Nakajima. Statistical-Mechanical Theory of Irreversible Processes. 1. General Theory and Simple Applications to Magnetic and Conduction Problems. J. Phys. Soc. Jpn., 12:570–586, 1957.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  40. R. Kubo, M. Yokota, and S. Nakajima. Statistical-Mechanical Theory of Irreversible Processes. 2. Response to Thermal Disturbance. J. Phy. Soc. Jpn., 12:1203–1211, 1957.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  41. P. Hänggi and H. Thomas. Stochastic processes: Time evolution, symmetries and linear response. Phys. Rep, 88:207, 1982.

    Article  MathSciNet  ADS  Google Scholar 

  42. P. Hänggi and H. Thomas. Time evolution, crelations, and linear response of non-markov processes. Z. Physik B, 26:85, 1977.

    Article  ADS  Google Scholar 

  43. P. Hänggi. Stochastic-processes. 2. response theory and fluctuation theorems. Helvetica Physica Acta, 51:202, 1978.

    MathSciNet  Google Scholar 

  44. G. N. Bochkov and Yu. E. Kuzovlev. Nonlinear fluctuation-dissipation relations and stochastic models in nonequilibrium thermodynamics : I. generalized fluctuation-dissipation theorem. Physica A, 106:443–79, 1981.

    Article  MathSciNet  ADS  Google Scholar 

  45. S. Arrhenius. Über die Reaktionngeschwindigkeit bei des Inversion von Rohrzucker durch Säuren. Zeit. Phys. Chent., 4:226, 1889.

    Google Scholar 

  46. H. A. Kramers. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica, 7:284, 1940.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  47. P. Hänggi and F. Moijtabai. Thermally activated escape rate in presence of long-time memory. Phys. Rev. A, 26:1168, 1982.

    Article  ADS  Google Scholar 

  48. R. F. Grote and J. T. Hynes. The stable states picture of chemical-reactions.2. Rate constants for condesed and gas-phase reaction models. J. Chem. Phys., 73:2715, 1980.

    Article  MathSciNet  ADS  Google Scholar 

  49. E. Pollak, S. C. Tucker, and B. J. Berne. Variational transition state theory for reaction-rates in dissipative systems. Phys. Rev. Lett., 65:1399, 1990.

    Article  ADS  Google Scholar 

  50. P. Hänggi, P. Talkner, and M. Borkovec. Reaction-rate theory – 50 years after Kramers. Rev. Mod. Phys., 62:251, 1990.

    Article  ADS  Google Scholar 

  51. F. A. Oliveira. Reaction rate theory for non-Markovian systems. Physica A, 257:128, 1998.

    Article  Google Scholar 

  52. J. A. Gonzalez and F. A. Oliveira. Nucleation theory, the escaping processes, and nonlinear stability. Phys. Rev. B, 59:6100, 1999.

    Article  ADS  Google Scholar 

  53. H. Mori. Transport, Collective Motion, and Brownian Motion. Prog. Theor. Phys., 33:423, 1965.

    Article  MATH  ADS  Google Scholar 

  54. R. Zwanzig. Nonequilibrium Statistical Mechanics. Oxford University Press, New York, 2001.

    Google Scholar 

  55. D. J. Evans and G. P. Morris. Statistical Mechanics of Nonequilibrium Liquids. Academic Press, London, 1990.

    MATH  Google Scholar 

  56. M. H. Lee. Derivation of the generalized Langevin equation by a method of recurrence relations. J. Math. Phys., 24:2512, 1983.

    Article  MathSciNet  ADS  Google Scholar 

  57. M. H. Lee. Fick’s Law, Green-Kubo Formula, and Heisenberg’s Equation of Motion. Phys. Rev. Lett., 85:2422, 2000.

    Article  ADS  Google Scholar 

  58. M. H. Lee. Ergodic Theory, Infinite Products, and Long Time Behavior in Hermitian Models. Phys. Rev. Lett., 87:250601, 2001.

    Article  MathSciNet  ADS  Google Scholar 

  59. R. A. Marcus. Theory of oxidation-reduction reactions reactions involving electron transfer. 4. A statistical-mechanical basis for treating contributions from solvent, ligands, and inert salt. Discuss. Faraday Soc., 29:21, 1960.

    Article  Google Scholar 

  60. S. Nakajima. On quantum theory of transport phenomena steady diffusion. Prog. Theor. Phys., 20:948, 1958.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  61. R. Morgado, F. A. Oliveira, G. G. Batrouni, and A. Hansen. Relation between Anomalous and Normal Diffusion in Systems with Memory. Phys. Rev. Lett., 89:100601, 2002.

    Article  ADS  Google Scholar 

  62. M. R. Spiegel. Theory and Problems of Laplace Transforms. McGraw-Hill, New York, 1965.

    Google Scholar 

  63. S. Alexander and R. Orbach. Density of states on fractals – fractons. J. Phys. (france) Lett., 43:L625, 1982.

    Google Scholar 

  64. E. Baskin and A. lomin. Superdiffusion on a Comb Structure. Phys. Rev. Lett., 93:120603, 2004.

    Article  ADS  Google Scholar 

  65. A. A. Budini and M. Caceres. Functional characterization of generalized Langevin equations. J. Phys. A. Math. Gen., 37:5959–5981, 2004.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  66. J. L. Ferreira, G. O. Ludwig, and A. Montes. Experimental investigations of ion-acoustic double-layers in the electron flow across multidipole magnetic fields. Plasma Phys. Controlled Fusion, 33:297–311, 1991.

    Article  ADS  Google Scholar 

  67. S. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer. Carbon nanotube quantum resistors. Science, 280:1744, 1998.

    Article  ADS  Google Scholar 

  68. V. Bellani, E. Diez, R. Hey, L. Toni, L. Tarricone, G. B. Parravicini, F. Domínguez-Adame, and R. Gómez-Alcalá. Experimental Evidence of Delocalized States in Random Dimer Superlattices. Phys. Rev. Lett., 82:2159, 1999.

    Article  ADS  Google Scholar 

  69. V. Bellani, E. Diez, A. Parisini, L. Tarricone, R. Hey, G. B. Parravicini, and F. Domínguez-Adame. Experimental evidence of delocalization in correlated disorder superlattices. Physica E, 7:823, 2000.

    Article  ADS  Google Scholar 

  70. P. Poncharal, C. Berger, Y. Yi, Z. L. Wang, and W. A. de Heer. Room temperature ballistic conduction in carbon nanotubes. J. Phys. Chem. B, 106:12104, 2002.

    Article  Google Scholar 

  71. A. F. G. Monte, S. W. da Silva, J. M. R. Cruz, P. C. Morals, and A. S. Chaves. Asymmetric carrier transport in InGaAs quantum wells and wires grown on tilted InP substrates. Physica E, 17:169, 2003.

    Article  ADS  Google Scholar 

  72. A. Bakk, J. O. Fossum, G. J. da Silva, H. M. Adland, A. Mikkelsen, and A. Elgsaeter. Viscosity and transient electric birefringence study of clay colloidal aggregation. Phys. Rev. E, 65:021407, 2002.

    Article  ADS  Google Scholar 

  73. F. A. Oliveira. Dynamical renormalization of anharmonic lattices at the onset of fracture: Analytical results for scaling, noise, and memory. Phys. Rev. B, 52:1009, 1995.

    Article  MathSciNet  ADS  Google Scholar 

  74. S. R. A. Salinas. Introduction to Statistical Physics. Springer, 2001.

    Google Scholar 

  75. S. Chandrasekhar. Stochastic Problems in Physics and Astronomy. Rev. Mod. Phys., 15:1–89, 1943.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  76. L. Rayleigh. Scientific papers of Lord Rayleigh. Dover, New York, 1964.

    Google Scholar 

  77. R. Loudon. The Quantum Theory of Light. Oxford University Press, New York, 2000.

    MATH  Google Scholar 

  78. A. Scalabrin, A. S. Chaves, D. S. Shin, and S. P. S. Porto. Temperature dependence of A1 and E optical phonons in Batio3. Phys. Status Solidi B, 79:731–742, 1977.

    Article  ADS  Google Scholar 

  79. D. L. Rousseau, R. P. Bauman, and S. P. S. Porto. Normal mode determination in crystals. J Raman Spectrosc, 10:253–290, 1981.

    Article  ADS  Google Scholar 

  80. A. S. Chaves. A fractional diffusion equation to describe Lévy flights. Phys. Lett. A, 239:13, 1998.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  81. R. Metzler and J. Klafter. The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep., 339:1, 2000.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  82. R. Metzler and J. Klafter. The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A. Math. Gen., 37:161, 2004.

    Article  MathSciNet  ADS  Google Scholar 

  83. P. Lévy. Théorie de l’Addition des Variables Aléatoires. Guthier-Villars, Paris, 1954.

    MATH  Google Scholar 

  84. F. A. Oliveira, B. A. Mello, and I. M. Xavier. Scaling transformation of random walk distributions in a lattice. Phys. Rev. E, 61:7200, 2000.

    Article  ADS  Google Scholar 

  85. F. A. Oliveira, J. A. Cordeiro, A. S. Chaves, B. A. Mello, and I. M. Xavier. Scaling transformation of random walk and generalized statistics. Physica A, 295:201, 2001.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  86. A. Figueiredo, I. Gleria, R. Matsushita, and S. da Silva. On the origins of truncated Lévy flights. Phys. Lett. A, 315:51, 2003.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  87. A. Figueiredo, I. Gleria, R. Matsushita, and S. da Silva. Autocorrelation as a source of truncated Lévy flights in foreign exchange rates. Physica A, 323:601, 2003.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  88. A. Figueiredo, I. Gleria, R. Matsushita, and S. da Silva. Autocorrelation and the sum of stochastic variables. Phys. Lett. A, 326:166, 2004.

    Article  ADS  MATH  Google Scholar 

  89. A. Figueiredo, I. Gleria, R. Matsushita, and S. da Silva. Lévy flights, autocorrelation, and slow convergence. Physica A, 337:369, 2004.

    Article  MathSciNet  ADS  Google Scholar 

  90. B. A. Mello, A. S. Chaves, and F. A. Oliveira. Discrete atomistic model to simulate etching of a crystalline solid. Phys. Rev. E, 63:041113, 2001.

    Article  ADS  Google Scholar 

  91. F. D. A. A. Reis. Dynamic transition in etching with poisoning. Phys. Rev. E., 68:041602, 2003.

    Article  ADS  Google Scholar 

  92. F. D. A. A. Reis. Universality in two-dimensional kardar-parisi-zhang growth. Phys. Rev. E., 69:021610, 2004.

    Article  ADS  Google Scholar 

  93. A. F. G. Monte, S. W. da Silva, J. M. R. Cruz, P. C. Morais, A. S. Chaves, and H. M. Cox. Symmetric and asymmetric fractal diffusion of electron-hole plasmas in semiconductor quantum wells. Phys. Lett. A, 268:430–435, 2000.

    Article  ADS  Google Scholar 

  94. A. F. G. Monte, S. W. da Silva, J. M. R. Cruz, P. C. Morais, and A. S. Chaves. Experimental evidence of asymmetric carrier transport in InGaAs quantum wells and wires grown on tilted InP substrates. Appl. Phys. Lett., 81:2460–2462, 2002.

    Article  ADS  Google Scholar 

  95. A. O. Caldeira and A. J. Leggett. Quantum tunnelling in a dissipative system. Ann. phys., 149:374–456, 1983.

    Article  ADS  Google Scholar 

  96. M. H. Vainstein, I. V. L. Costa, R. Morgado, and F. A. Oliveira. Non-exponential relaxation for anomalous diffusion. to be published., 2006.

    Google Scholar 

  97. M. H. Vainstein, R. Morgado, and F. A. Oliveira. Spatio-temporal conjecture for diffusion. Physica A, 357:109–114, 2005.

    Article  ADS  Google Scholar 

  98. J. Loschmidt. Über den zustand des wärmegleichgewichtes eines systems von körpern mit rücksicht auf die schwerkraft. Wien. Ber., 73:139, 1876.

    Google Scholar 

  99. K. Huang. Statistical Mechanics. John Wiley & Sons, New york, 1987.

    MATH  Google Scholar 

  100. U. Balucani, M. H. Lee, and V. Tognetti. Dynamical Correlactions. Phys. Rep., 373:409, 2003.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  101. F. A. Oliveira. Time-reversal symmetry in light scattering by excitations in a film. Sol. Stat. Comm., 40:859–861, 1981.

    Article  ADS  Google Scholar 

  102. F. A. Oliveira. How to build the Green-function for the elementary excitations in a film once we know those for a single interface. Sol. Stat. Comm., 85:1051, 1993.

    Article  ADS  Google Scholar 

  103. F. Moraes, A. M. de M. Carvalho, I. V. L. Costa, F. A. Oliveira, and C. Furtado. Topological interactions in spacetimes with thick line defects. Phys. Rev. D, 68:043512, 2003.

    Article  ADS  Google Scholar 

  104. J. A. McLennan. Onsager’s theorem and higher-order hydrodynamic equations. Phys. Rev. A, 10:1272–1276, 1974.

    Article  MathSciNet  ADS  Google Scholar 

  105. J. W. Dufty and J. M. Rubí. Generalized Onsager symmetry. Phys. Rev. A, 36:222–225, 1987.

    Article  MathSciNet  ADS  Google Scholar 

  106. A. L. Barabási and H. E. Stanley. Fractal Concepts in Surface Growth. Cambridge University Press, Cambridge, 1995.

    Book  MATH  Google Scholar 

  107. M. H. Lee. Can the velocity autocorrelation function decay exponentially? Phys. Rev. Lett., 51:1227–1230, 1983.

    Article  ADS  Google Scholar 

  108. X. Xia and P. G. Wolynes. Microscopic Theory of Heterogeneity and Non-exponential Relaxations in Supercooled Liquids. Phys. Rev. Lett., 86:5526, 2001.

    Article  ADS  Google Scholar 

  109. M. H. Vainstein, D. A. Stariolo, and J. J. Arenzon. Heterogeneities in systems with quenched disorder. J. Phys. A: Math. Gen., 36:10907–10919, 2003.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  110. F. Benmouna, B. Peng, J. Gapinski, A. Patkowski, J. Ruhe, and D. Johannsmann. Dynamic light scattering from liquid crystal polymer brushes swollen in a nematic solvent. Liq. Cryst., 28:1353, 2001.

    Article  Google Scholar 

  111. M. B. L. Santos, E. A. Oliveira, and A. M. F. Neto. Rayleigh scattering of a new lyotropic nematic liquid crystal system: crossover of propagative and diffusive behavior. Liq. Cryst., 27:1485, 2000.

    Article  Google Scholar 

  112. P. Licinio and M. B. L. Santos. Pretransitional scaling close to a double critical point in a potassium laurate, 1-decanol, and heavy water lyotropic liquid crystal. Phys. Rev. E., 65:031714, 2002.

    Article  ADS  Google Scholar 

  113. M. Peyrard. Glass transition in protein hydration water. Phys. Rev. E, 64:011109, 2001.

    Article  ADS  Google Scholar 

  114. F. Colaiori and M. A. Moore. Stretched exponential relaxation in the mode-coupling theory for the Kardar-Parisi-Zhang equation. Phys. Rev. E, 63:057103, 2001.

    Article  ADS  Google Scholar 

  115. J. P. Bouchaud, M. Mézard, and J. S. Yedidia. Variational theory for disordered vortex lattices. Phys. Rev. Lett., 67:3840, 1991.

    Article  ADS  Google Scholar 

  116. A. Pérez-Madrid. A model for nonexponential behavior and aging in dissipative systems. J. Chem. Phys., 122:214914, 2005.

    Article  ADS  Google Scholar 

  117. A. Cavagna, I. Giardina, and T. S. Grigera. Glassy dynamics, metastability limit and crystal growth in a lattice spin model. Europhys. Lett., 61:74, 2003.

    Article  ADS  Google Scholar 

  118. V. V. Belyi. Fluctuation-dissipation dispersion relation for a Nonlocal Plasma. Phys. Rev. Lett., 88:255001, 2002.

    Article  ADS  Google Scholar 

  119. V. V. Belyi. Fluctuation-dissipation-dispersion relations for a time and space nonlocal Plasma. Int. J. Quantum Chem., 98:183–190, 2004.

    Article  Google Scholar 

  120. J. M. G. Vilar and J. M. Rubí. Thermodynamics “beyond” local equilibrium. Proc. Nat. Acad. Sci, 98:11081–11084, 2001.

    Article  ADS  Google Scholar 

  121. H. B. Callen and R. F. Greene. On a Theorem of Irreversible Thermodynamics. Phys. Rev., 86:702, 1952.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  122. R. F. Greene and H. B. Callen. On a Theorem of Irreversible Thermodynamics. II. Phys. Rev., 88:1387, 1952.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  123. S. R. deGroot and P. Mazur. Non-Equilibrium Thermodynamics. Dover, New York, 1984.

    Google Scholar 

  124. J. M. Rubí and D. Bedeaux. Brownian-motion in a fluid in elongational flow. J. Stat. Phys., 53:125, 1988.

    Article  ADS  Google Scholar 

  125. J. M. Rubí A. Pérez-Madrid, D. Reguera. Origin of the Violation of the Fluctuation-Dissipation Theorem in Systems with Activated Dynamics. Physica A, 329:357, 2003.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  126. M. Naspedra, D. Reguera, A. Pérez-Madrid, and J. M. Rubí. Glassy dynamics: effective temperatures and intermittencies from a two-state model. Physica A, 351:14–21, 2005.

    Article  ADS  Google Scholar 

  127. A. Perez-Madrid, J. M. Rubí, I. Santamaría-Holek. Slow dynamics and local quasi-equilibrium – relaxation in supercooled colloidal systems. J. Phys – Condens. mat., 16:2047, 2004.

    Article  Google Scholar 

  128. B. B. Hu, E. A. de Souza, W. H. Knox, J. E. Cunningham, M. C. Nuss, A. V. Kuznetsov, and S. L. Chuang. Identifying the Distinct Phases of Carrier Transport in Semiconductors with 10 fs Resolution. Phys. Rev. Lett., 74:1689–1692, 1995.

    Article  ADS  Google Scholar 

  129. M. Blasone, P. Jizba, and G. Vitiello. Dissipation and quantization. Phys. Lett. A, 287:205–210, 2001.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  130. T. S. Biró, S. G. Matinyan, and B. Müller. Chaotic quantization of classical gauge fields. Found. Phys. Lett., 14:471–485, 2001.

    Article  Google Scholar 

  131. M. Suzuki. New unified formulation of transient phenomena near the instability point on the basis of the Fokker-Planck equation. Physica A, 117:103, 1983.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  132. I. An, S. Chen, and H. Guo. Search for the symmetry of the Fokker-Planck equation. Physica A, 128:520, 1984.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  133. G. Cicogna and D. Vitali. Generalised symmetries of Fokker-Planck-type equations. J. Phys. A: Math. Gen, 22:L453, 1989.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  134. W. M. Shtelen and V. I. Stogny. Symmetry properties of one-dimensional and two-dimensional Fokker-Planck equations. J. Phys. A: Math. Gen, 22:L539, 1989.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  135. P. Rudra. Symmetry classes of the Fokker-Planck type equations. J. Phys. A: Math. Gen., 22:L539, 1990.

    Google Scholar 

  136. G. Cicogna and D. Vitali. Classification of the extended symmetries of Fokker-Planck equations. J. Phys. A: Math. Gen, 23:L85, 1990.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  137. S. Spichak and V. Stognii. Symmetry classification and exact solution of the one-dimensional Fokker-Planck equations with arbitrary coefficients of drift and diffusion. J. Phys. A: Math. Gen, 32:8341, 1999.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  138. V. Cherkasenko. Galilei invariance of the Fokker-Planck equations with non-linearity. Nonlinear Math. Phys., 2:416, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  139. J. A. Cardeal, A. E. Santana, and T. M. Rocha. Symmetry and Classes of transport equations. Physica A, 308:292–300, 2002.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  140. M. de Montigny, F. C. Khanna, and A. E. Santana. Gauge symmetry in Fokker-Planck dynamics. Physica A, 323:327, 2003.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  141. C. Duval, G. Burdet, H. P. Künzle, and M. Perrin. Bargmann Structures and Newton-Cartan Theory. Phys. Rev. D, 31:1841–1853, 1985.

    Article  MathSciNet  ADS  Google Scholar 

  142. Y. Takahashi. Towards the Many-Body theory with the Galilei invariance as a guide I. Fortschr. Phys., 36:63, 1988.

    Article  MathSciNet  Google Scholar 

  143. M. de Montigny, F. C. Khanna, and A. E. Santana. On Galilei-Covariant Lagrangian Models of fluids. J. Phys. A: Math. Gen, 34:10921, 2001.

    Article  MATH  Google Scholar 

  144. A. S. Chaves, J. M. Figueiredo, and M. C. Nemes. Metric fluctuations, thermodynamics, and classical physics – A proposed connection. Ann. Phys., 231:174–184, 1994.

    Article  MathSciNet  ADS  Google Scholar 

  145. J. L. Acebal, A. S. Chaves, J. M. Figueiredo, A. L. Mota, and M. C. Menes. Statistical approach for quantum gravity fluctuations in QFT. Phys. Lett. B, 445:94, 1998.

    Article  ADS  Google Scholar 

  146. P. W. Anderson. Absence of diffusion in certain random lattices. Phys. Rev., 109:1492–1505, 1958.

    Article  ADS  Google Scholar 

  147. S. N. Evangelou and D. E. Katsanos. Super-Diffusion in random chains with correlated disorder. Phys Lett. A., 164:456–464, 1992.

    Article  ADS  Google Scholar 

  148. F. A. B. F. de Moura, M. D. Coutinho-Filho, E. P. Raposo, and M. L. Lyra. Delocalization and spin-wave dynamics in ferromagnetic chains with long-range correlated random exchange. Phys. Rev. B, 66:014418, 2002.

    Article  ADS  Google Scholar 

  149. F. A. B. F. de Moura, M. D. Coutinho-Filho, E. P. Raposo, and M. L. Lyra. Delocalization in harmonic chains with long-range correlated random masses. Phys. Rev. B., 68:012202, 2003.

    Article  ADS  Google Scholar 

  150. F. A. B. F. de Moura and M. L. Lyra. Delocalization in the ID Anderson model with long-range correlated disorder. Phys. Rev. Lett, 81:3735–3738, 1998.

    Article  ADS  Google Scholar 

  151. M. H. Vainstein, R. Morgado, F. A. Oliveira, F. A. B. F. de Moura, and M. D. Coutinho-Filho. Stochastic description of the dynamics of the random exchange Heisenberg chain. Phys. Lett. A, 339:33–38, 2003.

    Article  ADS  Google Scholar 

  152. L. Longa, E. M. F. Curado, and F. A. Oliveira. Roundoff-induced coalescence of chaotic trajectories. Phys. Rev. E, 54:R2201, 1996.

    Article  ADS  Google Scholar 

  153. S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, and C. S. Zhou. The synchronization of chaotic systems. Phys. Rep., 366:1–101, 2002.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  154. R. P. Feynman. The character of physical law. The Random House Publishing Group, New York, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Vainstein, M., Costa, I., Oliveira, F. (2006). Mixing, Ergodicity and the Fluctuation-Dissipation Theorem in Complex Systems. In: Miguel, M.C., Rubi, M. (eds) Jamming, Yielding, and Irreversible Deformation in Condensed Matter. Lecture Notes in Physics, vol 688. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33204-9_10

Download citation

Publish with us

Policies and ethics