Mode Conversion Radiation in the Terrestrial Ionosphere and Magnetosphere

  • P.H. Yoon
  • J. LaBelle
  • A.T. Weatherwax
  • M. Samara
Part of the Lecture Notes in Physics book series (LNP, volume 687)


A significant fraction of the radiation types observed in the Earth’s ionosphere and magnetosphere can be classified as mode-conversion radiation, in that they result from generation of electrostatic waves by unstable particle populations followed by conversion of some fraction of the wave energy to electromagnetic modes which then propagate relatively long distances. In particular, we address the complex frequency structure observed in terrestrial mode conversion radiation. Theory suggests that electrostatic eigenmodes trapped within source-region density structures, analogous to the quantum energy levels of hydrogen atom potential well, may account for the observed fine frequency structure. We review observational results, provide a synthesized, generalized version of the appropriate theory extending existing theoretical work, and assess the current state of comparison between the theoretical predictions and the observations. Understanding the mode-conversion radiation processes in near-Earth geospace may significantly enhance interpretations of observations of similar radiations from more remote space plasma environments such as distant magnetospheres, the solar atmosphere, and astrophysical plasmas.


Radio Emission Mode Conversion Langmuir Wave Electron Distribution Function Auroral Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bauer, S.J., and R.G. Stone: Satellite observations of radio noise in the magnetosphere, Nature 128, 1145, 1968. CrossRefGoogle Scholar
  2. [2]
    Beghin, C., J.L. Rauch, and J.M. Bosqued: Electrostatic plasma waves and HF auroral hiss generated at low altitudes, J. Geophys. Res. 94, 1359, 1989. Google Scholar
  3. [3]
    Benson, R.F., and H.K.Wong: Low-altitude ISIS 1 observations of auroral radio emissions and their significance to the cyclotron maser instability, J. Geophys. Res. 92, 1218, 1987. Google Scholar
  4. [4]
    Cairns, I.H. and J.D. Menietti: Radiation near 2f p and intensified emissions near f p in the dayside and nightside auroral region and polar cap, J. Geophys. Res. 102, 4787, 1997. Google Scholar
  5. [5]
    Calvert, W.: A feedback model for the source of auroral kilometric radiation, J. Geophys. Res. 87, 8199, 1982. Google Scholar
  6. [6]
    Carlson, C.W. et al.: unpublished manuscript, 1987. Google Scholar
  7. [7]
    Carpenter, D.L., and R.R. Anderson: An ISEE/whistler model of equatorial electron density in the magnetosphere, J. Geophys. Res. 97, 1097, 1992. Google Scholar
  8. [8]
    Chiu, Y.T., and M. Schulz: Self-consistent particle and parallel electrostatic field distributions in the magnetospheric - ionospheric auroral region, J. Geophys. Res. 83, 629, 1978. Google Scholar
  9. [9]
    Ergun, R.E., C.W. Carlson, J.P. McFadden, J.H. Clemmons, and M.H. Boehm: Evidence of transverse Langmuir modulational instability in a space plasma, Geophys. Res. Lett. 18, 1177, 1991a. Google Scholar
  10. [10]
    Ergun, R.E., C.W. Carlson, J.P. McFadden, J.H. Clemmons, and M.H. Boehm: Langmuir wave growth and electron bunching: Results from a wave-particle correlator, J. Geophys. Res. 96, 225, 1991b. Google Scholar
  11. [11]
    Filbert, P.C. and P.J. Kellogg: Electrostatic noise at the plasma frequency beyond the earth’s bow shock, J. Geophys. Res. 84, 1369, 1979. Google Scholar
  12. [12]
    Gough, M.P.: Nonthermal continuum emissions associated with electron injections: Remote plasmapause sounding, Planet. Space Sci. 30, 657, 1982. CrossRefGoogle Scholar
  13. [13]
    Green, J.L., B.R. Sandel, S.F. Fung, D.L. Gallagher, and B.W. Reinisch: On the origin of kilometric continuum, J. Geophys. Res. 107, 1105, 10.1029/2001JA000193, 2002.Google Scholar
  14. [14]
    Green, J.L., Scott Boardsen, Shing F. Fung, H. Matsumoto, K. Hashimoto, R.R. Anderson, B.R. Sandel, and B.W. Reinisch: Association of kilometric continuum with plasmapsheric structures, J. Geophys. Res. 109, A03203, doi:10.1029/2003JA010093, 2004. Google Scholar
  15. [15]
    Gregory, P.C.: Radio emissions from auroral electron, Nature 221, 350, 1969. Google Scholar
  16. [16]
    Gurnett, D.A. and R.R. Shaw: Electromagnetic radiation trapped in the magnetosphere above the plasma frequency, J. Geophys. Res. 78, 8136, 1973. Google Scholar
  17. [17]
    Gurnett, D.A.: The Earth as a radio source: The nonthermal continuum, J. Geophys. Res. 80, 2751, 1975. Google Scholar
  18. [18]
    Gurnett, D.A., F.L. Scarf, W.S. Kurth, R.R. Shaw, and R.L. Poynter: Determination of Jupiter’s Electron Density Profile from Plasma Wave Observations, J. Geophys. Res. 86, 8199–8212, 1981. Google Scholar
  19. [19]
    Hashimoto, K., W. Calvert, and H. Matsumoto: Kilometric continuum detected by Geotail, J. Geophys. Res. 104, 28645, 1999. CrossRefGoogle Scholar
  20. [20]
    Horne, R.B.: Path-integrated growth of electrostatic waves: The generation of terrestrial myriametric radiation, J. Geophys. Res. 94, 8895, 1989. Google Scholar
  21. [21]
    Horne, R.B.: Narrowband structure and amplitude of terrestrial myriametric radiation, J. Geophys. Res. 95, 3925, 1990. Google Scholar
  22. [22]
    Hughes, J.M. and J. LaBelle: Plasma conditions in auroral roar source regions inferred from radio and radar observations, J. Geophys. Res. 106, 21157, 2001. CrossRefGoogle Scholar
  23. [23]
    Issautier, K., N. Meyer-Vernet, M. Moncuquet, S. Hoang, and D.J. McComas: Quasi-thermal noise in a drifting plasma: theory and application to solar wind diagnostic on Ulysses, J. Geophys. Res. 104, 6691, 1999. CrossRefGoogle Scholar
  24. [24]
    James, H.G., E.L. Hagg, and L.P. Strange: Narrowband radio noise in the topside ionosphere, AGARD Conf. Proc., AGARD-CP-138, 24, 1974. Google Scholar
  25. [25]
    Jones, D.: Source of terrestrial nonthermal radiation, Nature 260, 385, 1976. Google Scholar
  26. [26]
    Jones, D.: Latitudinal beaming of planetary radio emissions, Nature 288, 225, 1980. CrossRefGoogle Scholar
  27. [27]
    Kasaba, Y., H. Matsumoto, K. Hashimoto, R.R. Anderson, J.-L. Bougeret, M.L. Kaiser, X.Y. Wu, and I. Nagano: Remote sensing of the plasmapause during substorms: Geotail observation of nonthermal continuum enhancement, J. Geophys. Res. 103, 20389, 1998. Google Scholar
  28. [28]
    Kaufmann, R. L.: Electrostatic wave growth: Secondary peaks in measured auroral electron distribution function, J. Geophys. Res. 85, 1713, 1980. CrossRefGoogle Scholar
  29. [29]
    Kellogg, P.J. and S.J. Monson: Radio emissions from aurora, Geophys. Res. Lett. 6, 297, 1979. Google Scholar
  30. [30]
    Kellogg, P.J. and S.J. Monson: Further studies of auroral roar, Radio Sci. 19, 551, 1984. Google Scholar
  31. [31]
    Kletzing, C.A., S.R. Bounds, J. LaBelle and M. Samara: Observation of the reactive component of Langmuir wave phase-bunched electrons, Geophys. Res. Lett., in press, 2005. Google Scholar
  32. [32]
    Kurth, W.S., D.A. Gurnett, and R.R. Anderson: Escaping nonthermal continuum radiation, J. Geophys. Res. 86, 5519, 1981. Google Scholar
  33. [33]
    Kurth, W.S.: Detailed observations of the source of terrestrial narrowband electromagnetic radiation, Geophys. Res. Lett. 9, 1341, 1982. Google Scholar
  34. [34]
    LaBelle, J.: Radio Noise of Auroral Origin: 1968–1988, J. Atmos. Terr. Phys. 51, 197, 1989. CrossRefGoogle Scholar
  35. [35]
    LaBelle, J., M.L. Trimpi, R. Brittain, and A.T. Weatherwax: Fine structure of auroral roar emissions, J. Geophys. Res. 100, 21953, 1995.CrossRefGoogle Scholar
  36. [36]
    LaBelle, J., S.G. Shepherd, and M.L. Trimpi: Observations of auroral medium frequency bursts, J. Geophys. Res. 102, 22221, 1997. CrossRefGoogle Scholar
  37. [37]
    LaBelle, J. and R.A. Treumann: Auroral Radio Emissions, 1. Hisses, Roars, and Bursts, Space Sci. Rev. 99, 295, 2002. CrossRefGoogle Scholar
  38. [38]
    Lund, E.J., J. LaBelle, and R.A. Treumann: On quasi-thermal fluctuations near the plasma frequency in the outer plasmasphere: A case study, J. Geophys. Res. 99, 23651, 1994. CrossRefGoogle Scholar
  39. [39]
    Lund, E.J., R.A. Treumann, and J. LaBelle: Quasi-thermal fluctuations in a beam-plasma system, Phys. Plasmas 3, 1234, 1996. CrossRefGoogle Scholar
  40. [40]
    McAdams, K.L., J. LaBelle, M.L. Trimpi, P.M. Kintner, and R.A. Arnoldy: Rocket observations of banded structure in waves near the Langmuir frequency in the auroral ionosphere, J. Geophys. Res. 104, 28109, 1999. CrossRefGoogle Scholar
  41. [41]
    McAdams, K.L. and J. LaBelle: Narrowband structure in HF waves above the plasma frequency in the auroral ionosphere, Geophys. Res. Lett., 26, 1825, 1999. CrossRefGoogle Scholar
  42. [42]
    McAdams, K.L., R.E. Ergun, and J. LaBelle: HF Chirps: Eigenmode trapping in density deletions, Geophys. Res. Lett. 27, 321, 2000. CrossRefGoogle Scholar
  43. [43]
    McFadden, J.P., C.W. Carlson, and M.H. Boehm: High-frequency waves generated by auroral electrons, J. Geophys. Res. 91, 12079, 1986. Google Scholar
  44. [44]
    Melrose, D.B.: A theory for the nonthermal radio continua in the terrestrial and Jovian magnetospheres, J. Geophys. Res. 86, 30, 1981. Google Scholar
  45. [45]
    Menietti, J.D., R.R. Anderson, J.S. Pickett, and D.A. Gurnett: Near-source and remote observations of kilometric continuum radiation from multispacecraft observations, J. Geophys. Res. 108, 1393, doi:10.1029/2003JA009826, 2003. Google Scholar
  46. [46]
    Menietti, J.D., O. Santolik, J.S. Pickett, and D.A. Gurnett: High resolution observations of continuum radiation, Planet. Space Sci., submitted 2004. Google Scholar
  47. [47]
    Meyer-Vernet, N., and C. Perche: Tool kit for antennae and thermal noise near the plasma frequency, J. Geophys. Res. 94, 2405, 1989. Google Scholar
  48. [48]
    Meyer-Vernet, N.: On the thermal noise in an anisotropic plasma, J. Geophys. Res. 21, 397, 1994. Google Scholar
  49. [49]
    Osherovich, V. and J. Fainberg: Dependence of frequency of nonlinear cold plasma cylindrical oscillations, Phys. Plasmas 11, 2314, 2004. Google Scholar
  50. [50]
    Pottelette, R. and R.A. Treumann: Auroral acceleration and radiation, this volume, 2005. Google Scholar
  51. [51]
    Rönnmark, K.: Emission of myriametric radiation by coalescence of upper hybrid waves with low frequency waves, Anal. Geophys. 1, 187, 1983. Google Scholar
  52. [52]
    Samara, M., J. LaBelle, C.A. Kletzing, and S.R. Bounds: Rocket Measurements of Polarization of Auroral HF Waves, EOS Trans. Am. Geophys. Union, Fall Meeting, 2002. Google Scholar
  53. [53]
    Samara, M., J. LaBelle, C.A. Kletzing, and S.R. Bounds: Rocket observations of structured upper hybrid waves at fuh = 2fce, Geophys. Res. Lett. 31, L22804, 10.1029/2004GL021043, 2004. Google Scholar
  54. [54]
    Samara, M., J. LaBelle, I.H. Cairns and R.A. Treumann, Statistics of Auroral Langmuir Waves, J. Geophys. Res., submitted, 2005. Google Scholar
  55. [55]
    Shepherd, S.J., J. LaBelle, and M.L. Trimpi: Further investigation of auroral roar fine structure, J. Geophys. Res. 103, 2219, 1998a. Google Scholar
  56. [56]
    Shepherd, S.J., J. LaBelle, and M.L. Trimpi: The polarization of auroral radio emissions, Geophys. Res. Lett. 24, 3161, 1998b.Google Scholar
  57. [57]
    Steinberg, J.-L., S. Hoang, and M.F. Thomsen: Observations of the Earth’s continuum radiation in the distant magnetotail with ISEE-3, J. Geophys. Res. 95, 20781, 1990. Google Scholar
  58. [58]
    Walsh, D., F.T. Haddock, and H.F. Schulte: Cosmic radio intensities at 1.225 and 2.0 Mc measured up to an altitude of 1700 km, in: Space Res., 4, edited by P. Muller, pp. 935–959, North Holland Publishing Company, Amsterdam, 1964. Google Scholar
  59. [59]
    Weatherwax, A.T., J. LaBelle, M.L. Trimpi, and R. Brittain: Ground-based observations of radio emissions near 2fce and 3fce in the auroral zone, Geophys. Res. Lett. 20, 1447, 1993. Google Scholar
  60. [60]
    Weatherwax, A.T., J. LaBelle, and M.L. Trimpi: A new type of auroral radio emission observed at medium frequencies (1350–3700 kHz) using groundbased receivers, Geophys. Res. Lett. 21, 2753, 1994. Google Scholar
  61. [61]
    Weatherwax, A. T., J. LaBelle, M. L. Trimpi, R. A. Treumann, J. Minow, and C. Deehr: Statistical and case studies of radio emissions observed near 2fce and 3fce in the auroral zone, J. Geophys. Res. 100, 7745, 1995. Google Scholar
  62. [62]
    Weatherwax, A.T., P.H. Yoon, and J. LaBelle: Interpreting observations of MF/HF radio emissions: Unstable wave modes and possibilities to passively diagnose ionospheric densities, J. Geophys. Res. 107, 1213, doi:10.1029/2001JA000315, 2002. Google Scholar
  63. [63]
    Willes, A.J. and I.H. Cairns: Banded frequency structure from linear mode conversion in inhomogeneous plasmas, Phys. Plasmas 10, 4072, 2003. CrossRefGoogle Scholar
  64. [64]
    Yoon, Peter H., A.T. Weatherwax, T.J. Rosenberg, and J. LaBelle, Lower ionospheric cyclotron maser theory: A possible source of 2fce and 3fce auroral radio emissions, J. Geophys. Res. 101, 27,015, 1996. Google Scholar
  65. [65]
    Yoon, P.H., A.T. Weatherwax, and T.J. Rosenberg: On the generation of auroral radio emissions at harmonics of the lower ionospheric electron cyclotron frequency: X, O, and Z mode maser calculations, J. Geophys. Res. 103, 4071, 1998a. Google Scholar
  66. [66]
    Yoon, P.H., A.T. Weatherwax, T.J. Rosenberg, J. LaBelle, and S.G. Shepherd: Propagation of medium frequency (1–4 MHz) auroral radio waves to the ground via the Z-mode radio window, J. Geophys. Res. 103, 29267, 1998b. Google Scholar
  67. [67]
    Yoon, P.H., A.T. Weatherwax, and J. LaBelle: Discrete electrostatic eigenmodes associated with ionospheric density structure: Generation of auroral roar fine frequency structure, J. Geophys. Res. 105, 27580, 2000. Google Scholar
  68. [68]
    Yoon, P.H. and J. LaBelle, Discrete Langmuir waves in density structure, J. Geophys. Res. 110, A11308, doi:10.1029/2005JA011186, 2005. Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • P.H. Yoon
    • 1
  • J. LaBelle
    • 2
  • A.T. Weatherwax
    • 3
  • M. Samara
    • 1
  1. 1.Inst. for Physical Sci. and Tech.Univ. of MarylandCollege Park
  2. 2.Dept. of Physics and AstronomyDartmouth CollegeHanover
  3. 3.Department of PhysicsSiena CollegeLoudonvilleNew York

Personalised recommendations