The Influence of Plasma Density Irregularities on Whistler-Mode Wave Propagation

  • V.S. Sonwalkar
Part of the Lecture Notes in Physics book series (LNP, volume 687)


Whistler mode (W-mode) waves are profoundly affected by Field-xsAligned Density Irregularities (FAI) present in the magnetosphere. These irregularities, present in all parts of the magnetosphere, occur at scale lengths ranging from a few meters to several hundred kilometers and larger. Given the spatial sizes of FAI and typical wavelength of W-mode waves found in the magnetosphere, it is convenient to classify FAI into three broad categories: large scale FAI, large scale FAI of duct-type, and small scale FAI. We discuss experimental results and their interpretations which provide physical insight into the effects of FAI on whistler (W) mode wave propagation. It appears that FAI, large or small scale, influence the propagation of every kind of W-mode waves originating on the ground or in space. There are two ways FAI can influence W-mode propagation. First, they provide W-mode waves accessibility to regions otherwise not reachable. This has made it possible for W-mode waves to probe remote regions of the magnetosphere, rendering them as a powerful remote sensing tool. Second, they modify the wave structure which may have important consequences for radiation belt dynamics via wave-particle interactions. We conclude with a discussion of outstanding questions that must be answered in order to determine the importance of FAI in the propagation of W-mode waves and on the overall dynamics of wave-particle interactions in the magnetosphere.


Radiation Belt Topside Ionosphere Whistler Mode Density Irregularity Lower Hybrid Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Anderson, R. R. and W. S. Kurth: Discrete electromagnetic emissions in planetary magnetospheres, Plasma Waves and Instabilities at Comets and in Magnetospheres, Geophys. Monograph Vol. 53, (B. T. Tsurutani and H. Oya, Eds.), p. 81, 1989. Google Scholar
  2. [2]
    Angerami, J. J.: Whistler duct properties deduced from VLF observations made with the OGO-3 satellite near the magnetic equator, J. Geophys. Res. 75, 6115, 1970. Google Scholar
  3. [3]
    Angerami, J. J., and J. O. Thomas, Studies of planetary atmosphere 1, the distribution of electrons and ions in the Earth’s exosphere, J. Geophys. Res. 69, 4537, 1964. Google Scholar
  4. [4]
    Barrington, R. E., and Belrose, J. S., (1963). Preliminary results from the very-low-frequency receiver aboard Canada’s Alouette satellite, Nature 198, 651, 1963. Google Scholar
  5. [5]
    Barrington, R. E., J. S. Belrose, and D. A. Keeley: Very low frequency noise bands observed by the Alouette 1 satellite, J. Geophys. Res. 68, 6539, 1963. Google Scholar
  6. [6]
    Bell, T. F. and H. D. Ngo: Electrostatic waves stimulated by coherent VLF signals propagating in and near the inner radiation belt, J. Geophys. Res. 93, 2599, 1988. Google Scholar
  7. [7]
    Bell, T. F. and H. D. Ngo: Electrostatic lower hybrid waves excited by electromagnetic whistler mode waves scattering from planar magnetic-field-aligned plasma density irregularities, J. Geophys. Res. 95, 149, 1990. Google Scholar
  8. [8]
    Bell, T. F., James, H. G., Inan, U. S., and Katsufrakis, J. P.: The apparent spectral broadening of VLF transmitter signals during transionospheric propagation, J. Geophys. Res., 88, 4813, 1983.Google Scholar
  9. [9]
    Bell, T. F., R. A. Helliwell, and M. K. Hudson: Lower-hybrid waves excited through linear mode coupling and the heating ofions in the auroral and subauroral magnetosphere, J. Geophys. Res. 96, 11379, 1991a. Google Scholar
  10. [10]
    Bell, T. F., U. S. Inan, V. S. Sonwalkar, and R. A. Helliwell: DE-1 Observations of lower hybrid waves excited by VLF whistler mode waves, Geophys. Res. Lett., 18, 393, 1991b. Google Scholar
  11. [11]
    Bell, T. F., R. A. Helliwell, U. S. Inan, and D. S. Lauben: The heating of suprathermal ions above thunderstorm cells, Geophys. Res. Lett. 20, 94, 1993.Google Scholar
  12. [12]
    Bell, T. F., U. S. Inan, M. Platino, J. S. Pickett, P. A. Kossey, and E. J. Kennedy: CLUSTER observations of lower hybrid waves excited at high altitudes by electromagnetic whistler mode signals from the HAARP facility, Geophys. Res. Lett. 31, L06811, 2004. Google Scholar
  13. [13]
    Benson, R. F. and W. Calvert: ISIS 1 observations at the source of auroral kilometric radiation, Geophys. Res. Lett. 6, 479, 1979. Google Scholar
  14. [14]
    Benson, R. F., V. A. Osherovich, J. Fainberg, and B. W. Reinisch: Classi fication of IMAGE/RPI-stimulated plasma resonances for the accurate determination of magnetospheric electron-density and magnetic field values, J. Geophys. Res. 108, 1207, 2003. CrossRefGoogle Scholar
  15. [15]
    Benson, R. F., P. A. Webb, J. L. Green, D. L. Carpenter, V. S. Sonwalkar, H. G. James, and B. W. Reinisch: Active wave experiments in space plasmas: The Z mode, these Proceedings, Ringberg Workshop, 2005. Google Scholar
  16. [16]
    Bernhardt, P. A. and C. G. Park: Protonospheric-ionospheric modeling of VLF ducts, J. Geophys. Res. 82, 5222, 1977. Google Scholar
  17. [17]
    Bortnik, J., U. S. Inan, and T. F. Bell: Frequency-time spectra of magnetospherically reflecting whistlers in the plasmasphere, J. Geophys. Res. 108, 1030, 2003. CrossRefGoogle Scholar
  18. [18]
    Brice, N. M. and R. L. Smith: Lower hybrid resonance emissions, J. Geophys. Res. 70, 71, 1965. Google Scholar
  19. [19]
    Budden, K. G.: The propagation of radio waves, Cambridge University Press, Cambridge, 1985. Google Scholar
  20. [20]
    Burgess, W. C. and U. S. Inan: The role of ducted whistlers in the precipitation loss and equilibrium flux of radiation belt electrons, J. Geophys. Res. 98, 15,643, 1993. Google Scholar
  21. [21]
    Cairo, L. and J. C. Cerisier: Experimental study of ionospheric electron density gradients and thier effect on VLF propagation, J. Atmos. Terr. Phys. 38, 27, 1976. CrossRefGoogle Scholar
  22. [22]
    Calvert, W.: Wave ducting in different wave modes, J. Geophys. Res. 100, 17,491, 1995. Google Scholar
  23. [23]
    Carpenter D. L.: Whistlers and VLF Noises Propagating Just Outside the Plasmasphere, J. Geophys. Res. 83, 44, 1978. Google Scholar
  24. [24]
    Carpenter, D.L.: A study of the outer limits of ducted whistler propagation in the magnetosphere, J. Geophys. Res. 86, 839–45, 1981. Google Scholar
  25. [25]
    Carpenter, D. L.: Remote Sensing the Earth’s Plasmasphere, Radio Science Bull. (URSI), 308 (March), 13, 2004. Google Scholar
  26. [26]
    Carpenter, G. B. and L. Colin: On a remarkable correlation between whistler mode propagation and high frequency northscatter, J. Geophys. Res. 68, 5649, 1963. Google Scholar
  27. [27]
    Carpenter, D. L. and D. M. Šulić: Ducted whistler propagation outside the plasmapause, J. Geophys. Res.93, 9731, 1988. Google Scholar
  28. [28]
    Carpenter, D. L., F. Walter, R. E. Barrington, and D. J. McEwen: Alouette 1 and2 observations of abrupt changes in whistler rate and of VLF noise variationsat the plasmapause-a satellite-ground study, J. Geophys. Res. 73, 2929, 1968. Google Scholar
  29. [29]
    Carpenter, D. L., R. R. Anderson, T. F. Bell and T. R. Miller: A comparison of equatorial electron densities measured by whistlers and by a satellite radio technique, Geophys. Res. Lett. 8, 1107, 1981.Google Scholar
  30. [30]
    Carpenter, D. L., M. A. Spasojević, T. F. Bell, U. S. Inan, B. W. Reinisch, I. A. Galkin, R. F. Benson, J. L. Green, S. F. Fung, and S. A. Boardsen: Small-scale field-aligned plasmaspheric density structures inferred from the Radio Plasma Imager on IMAGE, J. Geophys. Res. 107, 1258, doi:10.1029/2001JA009199, 2002. CrossRefGoogle Scholar
  31. [31]
    Carpenter, D. L., T. F. Bell, U. S. Inan, R. F. Benson, V. S. Sonwalkar, B. W. Reinisch, and D. L. Gallagher: Z-mode sounding within propagation "cavities" and other inner magnetospheric regions by the RPI instrument on the IMAGE satellite, J. Geophys. Res. 108, 1421, 2003. CrossRefGoogle Scholar
  32. [32]
    Cerisier, J. C.: A theoretical and experimental study of non-ducted VLF waves after propagation through the magnetosphere, J. Atmos. Terr. Phys. 35, 77, 1973. CrossRefGoogle Scholar
  33. [33]
    Dowden, R. L.: Distinction between mid latitude VLF hiss and discrete emissions, Planet. Space Sci. 19, 374, 1971. CrossRefGoogle Scholar
  34. [34]
    Dowden, R. L., and Heliwell, R. A., Very-low-frequency discrete emissions received at conjugate points, Nature, 195, 64, 1962. Google Scholar
  35. [35]
    Draganov, A. B., U. S. Inan, V. S. Sonwalkar, and T. F. Bell: Magnetospherically reflected whistlers as a source of plasmaspheric hiss, Geophys. Res. Lett. 19, 233, 1992. Google Scholar
  36. [36]
    Draganov, A. B., U. S. Inan, V. S. Sonwalkar, and T. F. Bell: Whistlers and plasmaspheric hiss: Wave directions and three- dimensional propagation, J. Geophys. Res. 98, 11,401, 1993. Google Scholar
  37. [37]
    Edgar, B. C.: The structure of the magnetosphere as deduced from magnetospherically reflected whistlers, Ph.D. Thesis, Stanford Univ., Dept. Electr. Engng., 1972. Google Scholar
  38. [38]
    Edgar, B. C.: The upper and lower frequency cuto.s of magnetospherically re.ected whistlers, J. Geophys. Res. 81, 205, 1976. Google Scholar
  39. [39]
    Fejer, B. G. and M. C. Kelley: Ionospheric irregularities, Rev. Geophys. 18, 401, 1980. Google Scholar
  40. [40]
    Ferencz, C. et al. (Eds.): Whistler phenomena : short impulse propagation, Kluwer Academic Publishers, Dordrecht and Boston, 2001. Google Scholar
  41. [41]
    Fung, S. F., R. F. Benson, D. L. Carpenter, B. W. Reinisch, and D. L. Gallagher: Investigations of plasma irregularities in remote plasma regions by radio sounding: Applications of the Radio Plasma Imager on IMAGE, Space Sci. Rev. 91, 391, 2000. CrossRefGoogle Scholar
  42. [42]
    Galkin, I, G. Khmyrov, A. Kozlov, B. Reinisch, X. Huang, and G. Sales: New tools for analysis of space-borne sounding data, in: Proc. 2001 USNC/URSI National Radio Science Meeting, July 8–13, 2001, p. 304, 2001. Google Scholar
  43. [43]
    Gendrin, R.: Le guidage des whistlers par le champ magnétique, Planet, Space Sci. 5, 274, 1961. CrossRefGoogle Scholar
  44. [44]
    Green, J. L., S. Boardsen, L. Garcia, W. W. L. Taylor, S. F. Fung, and B. W. Reinisch: On the origin of whistler mode radiation in the plasmasphere, J. Geophys. Res. 110, A03201, 2005. Google Scholar
  45. [45]
    Groves, K. M., M. C. Lee, and S. P. Kuo: Spectral broadening of VLF radio signals traversing the ionosphere, J. Geophys. Res. 93, 14,683, 1988. Google Scholar
  46. [46]
    Gurnett, D. A. and L. A. Frank: VLF hiss and related plasma observations in the polar magnetosphere, J. Geophys. Res. 77, 172, 1972a. Google Scholar
  47. [47]
    Gurnett, D. A. and L. A. Frank: ELF noise bands associated with auroral electron precipitation, J. Geophys. Res. 77, 3411, 1972b.Google Scholar
  48. [48]
    Gurnett, D. A. and U. S. Inan: Plasma wave observations with the Dynamics Explorer 1 spacecraft, Rev. Geophys. Space Phys. 26, 285, 1988. Google Scholar
  49. [49]
    Hamar, D., G. Tarcsai, J. Lichtenberger, A. J. Smith, and K. H. Yearby: Fine structure of whistlers recorded digitally at Halley, Antarctica, J. Atmos. Terr. Phys. 52, 801, 1990. CrossRefGoogle Scholar
  50. [50]
    Hamar, D., C. Ferencz, J. Lichtenberger, G. Tarcsai, A. J. Smith, and K. H. Yearby: Trace splitting of whistlers: a signature of fine structure or mode splitting Radio Sci. 27, 341, 1992. Google Scholar
  51. [51]
    Hayakawa, M.: Whistlers, in: Handbook of Atmospheric Electrodynamics, H. Volland (Ed.), CRC Press, Boca Raton, Florida, USA, 1995. Google Scholar
  52. [52]
    Hayakawa, M., Parrot, M., and Lefeuvre, F.: The wave normals of ELF hiss emissions observed on board GEOS 1 at the equatorial and off-equatorial regions of the plasmasphere, J. Geophys. Res., 91, 7989, 1986. Google Scholar
  53. [53]
    Hayakawa, M. and S. S. Sazhin: Mid-latitude and plasmaspheric hiss: a review, Planet Space Sci. 40, 1325, 1992. CrossRefGoogle Scholar
  54. [54]
    Helliwell, R. A.: Whistlers and Related Ionospheric Phenomena, Stanford Univ. Press, 1965. Google Scholar
  55. [55]
    Helliwell, R. A.: A theory of discrete VLF emissions from the magnetosphere, J. Geophys. Res. 72, 4773, 1967. Google Scholar
  56. [56]
    Helliwell, R. A.: VLF wave stimulation experiments in the magnetosphere from Simple Station, Antarctica, Rev. Geophys. Space Phys. 26, 551, 1988. Google Scholar
  57. [57]
    Helliwell, R.A.: The role of the Gendrin mode of VLF propagation in the generation of magnetospheric emissions, Geophys. Res. Lett. 16, 2095, 1995. CrossRefGoogle Scholar
  58. [58]
    Helliwell, R. A., J. H. Crary, J. H. Pope, and R. L. Smith: The “nose” whistler a new high latitude phenomenon, J. Geophys. Res. 61, 139, 20, 1956. Google Scholar
  59. [59]
    Heyborne, R. L.: Observations of whistler-mode signals in the OGO satellites from VLF ground station transmitters, Tech. Rep. No. 3415/3418–1, Stanford Electron. Lab., Stanford, Calif., 1966. Google Scholar
  60. [60]
    Hower, G. L. and W. I. Gluth: Associations between VLF hiss and HF radar echoes from field-aligned ionization, J. Geophys. Res. 70, 649, 1965. Google Scholar
  61. [61]
    Inan, U. S. and T. F. Bell: The plasmapause as a VLF waveguide, J. Geophys. Res. 82, 2819, 1977. Google Scholar
  62. [62]
    Inan, U.S. and T.F. Bell: Spectral broadening of VLF transmitter signals observed on DE1: a quasi-electrostatic phenomenon?, J. Geophys. Res. 90, 1771, 1985. Google Scholar
  63. [63]
    Jacobson, A. B. and W. C. Erickson: Observations of electron-density iregularities in the plasmasphere using the VLA radio-interferometer, Ann. Geophys. 11, 869, 1993. Google Scholar
  64. [64]
    Jacobson, A. B., R. C. Carlos, R. S. Massey, G. Wu, and G. Hoogeveen: Total electron-content signatures of plasmasphere motions, Geophys. Res. Lett., 22, 2461, 1995. CrossRefGoogle Scholar
  65. [65]
    James, H.G.: Refraction of whistler-mode waves by large-scale gradients inthe middle latitude ionosphere, Ann. Geophys. 28, 301, 1972. Google Scholar
  66. [66]
    Kelley, M.: The Earth’s Ionosphere, Academic Press, San Diego, California, 1989. Google Scholar
  67. [67]
    Kennel, C. F. and H. E. Petschek: Limit on stably trapped particle fluxes, J. Geophys. Res. 71, 1, 1966. Google Scholar
  68. [68]
    Kimura, I.: E.ects of ions on whistler-mode ray tracing, Radio Science 1, 269, 1966. 6 Density Irregularities and Whistler Propagation 187 Google Scholar
  69. [69]
    Kivelson, M. G. and C. T. Russell (Eds.): Introduction to Space Physics, Cambridge University Press, Cambridge 1995. Google Scholar
  70. [70]
    Kletzing, C. A., F. S. Mozer, and R. B. Torbert: Electron temperature and density at high latitude, J. Geophys. Res. 103, 14,837, 1998. Google Scholar
  71. [71]
    Koons, H. C.: Observations of large-amplitude, whistler mode wave ducts in the outer plasmasphere, J. Geophys. Res. 94, 15,393, 1989. Google Scholar
  72. [72]
    Laaspere, T. and H. A. Taylor: Comparison of certain VLF noise phenomena with the lower hybrid resonance frequency calculated from simultaneous ioncomposition measurements, J. Geophys. Res. 75, 97, 1970. Google Scholar
  73. [73]
    Laaspere, T. and W. C. Johnson: Additional results from an OGO-6 experiment concerning ionospheric electric and electromagnetic fields in the range 20 Hz to 540 kHz, J. Geophys. Res. 78, 2926, 1973. Google Scholar
  74. [74]
    LaBelle, J. W. and R. A. Treumann: Auroral radio emissions, Space Sci. Rev. 101, 295, 2002. CrossRefGoogle Scholar
  75. [75]
    Lauben, D. S., U. S. Inan, and T. F. Bell: Source characteristics of ELF/VLF chorus, J. Geophys. Res. 107, 1429, 2002. CrossRefGoogle Scholar
  76. [76]
    Lefeuvre, F., T. Neubert, M. Parrot, and C. Delannoy: Wave normal angles and wave distribution functions for ground transmitter signals, J. Geophys. Res. 87, 6203, 1982. Google Scholar
  77. [77]
    Lokken, J. E., J. A. Shand, C. S. Sir, K. C. B. Wright, L. H. Martin, N. M. Brice, and R. A. Helliwell: Stanford-Pacific Naval Laboratory conjugate point experiment, Nature 192, 319, 1961. CrossRefGoogle Scholar
  78. [78]
    Lyons, L. R. and D. J. Williams: Quantitative Aspects of Magnetosphere Physcs, D. Reidel Publishing Company, Dordrecht, Holland 1984. Google Scholar
  79. [79]
    Lyons, L. R., R. M. Thorne, and C. F. Kennel: Pitch-angle diffusion of radiation belt electrons with the plasmasphere, J. Geophys. Res. 77, 3455, 1972. Google Scholar
  80. [80]
    Masson, A., U. S. Inan, H. Laakso, O. Santolík, and P. Décréau: Cluster observations of mid-latitude hiss near the plasmapause Ann. Geophys. 22, 2565, 2004. Google Scholar
  81. [81]
    Matsuo, T., T. Nishiyama, and D. Matuhara: Propagation of a quasi electrostatic whistler mode auroral hiss to the ground, Proc. NIPR Symp. Upper Atmos. Phys. 12, 12, 1998. Google Scholar
  82. [82]
    Morgan, D. D., D. A. Gurnett, J. D. Menietti, J. D. Winningham, and J. L. Burch: Landau damping of auroral hiss, J. Geophys. Res. 99, 2471, 1994. CrossRefGoogle Scholar
  83. [83]
    Moullard, O., A. Masson, H. Laakso, M. Parrot, P. Décréau, O. Santolík, and M. André: Density modulated whistler mode emissions observed near the plasmapause, Geophys. Res. Lett. 29, 1975, 2002. CrossRefGoogle Scholar
  84. [84]
    Muldrew, D. G.: Nonvertical propagation and delayed-echo generation observed by the topside sounders, Proc. IEEE 57, 1097, 1969. Google Scholar
  85. [85]
    Neubert, T., E. Ungstrup, and A. Bahnsen: Observations on the GEOS 1 satellite of whistler mode signals transmitted by the omega navigation system transmitter in northen Norway, J. Geophys. Res. 88, 4015, 1983. Google Scholar
  86. [86]
    Ngo, H. D. and T. F. Bell: Quasi-electrostatic waves excited during the scattering of coherent whistler-mode waves excited from magnetic-field-aligned plasma density irregularities, Eos Trans. AGU 66, 1038, 1985. Google Scholar
  87. [87]
    Park, C. G. and R. A. Helliwell: The formation by electric fields of field-aligned irregularities in the magnetosphere, Radio Sci. 6, 299, 1971. Google Scholar
  88. [88]
    Persoon, A.M.: Electron density distributions, Adv. Space Res. 8, 79, 1988.CrossRefGoogle Scholar
  89. [89]
    Persoon, A. M., D. A. Gurnett, and S. D. Shawhan: Polar cap electron densities from DE 1 plasma wave observations, J. Geophys. Res. 88, 10,123. Google Scholar
  90. [90]
    Platino, M., U. S. Inan, T. F. Bell, D. A. Gurnett, J. S. Pickett, P. Canu, and P. M. E. Décréau: Whistlers observed by the Cluster spacecraft outside the plasmasphere, J. Geophys. Res. 110, A03212, 2005. Google Scholar
  91. [91]
    Poeverlein, H.: Strahlwege von Radiowellen in der Ionosphäre, Sitz. Ber. Bayerische Akad. Wiss. 1, 175, 1948. Google Scholar
  92. [92]
    Raghuram, R.: A new interpretation of subprotonospheric whistler characteristics, J. Geophys. Res. 80, 4729, 1975. Google Scholar
  93. [93]
    Rastani, K., U. S. Inan, and R. A. Helliwell: DE 1 observations of Siple transmitter signals and associated sidebands, J. Geophys. Res. 90, 4128, 1985. Google Scholar
  94. [94]
    Reinisch, B. W. et al.: The Radio Plasma Imager investigation on the IMAGE spacecraft, Space Sci. Rev. 91, 319, 2000. Google Scholar
  95. [95]
    Santolík, O., D. A. Gurnett, J. S. Pickett, M. Parrot, N. Cornilleau-Wehrlin: Spatio-temporal structure of storm-time chorus, J. Geophys. Res. 108, 1278, 2003. Google Scholar
  96. [96]
    Santolík, O., D. A. Gurnett, J. S. Pickett, M. Parrot, and N. Cornilleau-Wehrlin: A microscopic and nanoscopic view of storm-time chorus on 31 March 2001, Geophys. Res. Lett. 31, L02801, 2004. Google Scholar
  97. [97]
    Santolík, O., M. Parrot, L. R. O. Storey, J. Pickett, and D. A. Gurnett: Propagation analysis of plasmaspheric hiss using Polar PWI measurements, Geophys. Res. Lett. 28, 1127, 2001. Google Scholar
  98. [98]
    Santolík, O., A. M. Persoon, D. A. Gurnett, P. M. E. Decreau, J. S. Pickett, O. Marsalek, M. Maksimovic, and N. Cornilleau-Wehrlin: Drifting field-aligned density structures in the night-side polar cap, Geophys. Res. Lett. 32, L021696, 2005. Google Scholar
  99. [99]
    Sazhin, S. S. and M. Hayakawa: Magnetospheric chorus emissions: a review, Planet Space Sci., 40, 681, 1992. CrossRefGoogle Scholar
  100. [100]
    Sazhin, S. S. and M. Hayakawa: Periodic and quasiperiodic VLF emissions, J. Atmos. Terr. Phys. 56, 735, 1994. CrossRefGoogle Scholar
  101. [101]
    Sazhin, S. S., K. Bullough, and M. Hayakawa: Auroral hiss: A review, Planet. Space Sci. 41, 153, 1993. CrossRefGoogle Scholar
  102. [102]
    Scarabucci, R. R.: Analytic and numerical treatment of wave propagation in the lower ionosphere, Technical Report No. 3412–11, Stanford Electronics Laboratories, Stanford Univ., Stanford, Calif., 1969. Google Scholar
  103. [103]
    Scarf, F. L. and C. R. Chappell: An association of magnetosphericwhistler dispersion characteristics with changes in local plasma density, J. Geophys. Res. 78, 1597, 1973. Google Scholar
  104. [104]
    Schultz, M. and L. J. Lanzerotti, Particle diffusion in the radiation belts, Springer-Verlag, Berlin – Heidelberg – New York, 1974. Google Scholar
  105. [105]
    Schunk, R. W. and A. F. Nagy: Ionospheres: Physics, Plasma Physics, and Chemistry, Cambridge Univ. Press, New York, 2000. Google Scholar
  106. [106]
    Scudder, J. et al.: Hydra-A 3-dimensional electron and ion hot plasma instrument for the POLAR spacecraft of the GGS mission, in: The Global Geospace Mission, C. T. Russell (Ed.), Kluwer Acad. Publ., Norwell, Mass., 1995. Google Scholar
  107. [107]
    Shawhan, S. D.: Magnetospheric plasma wave research 1975–1978, Rev. Geophys. Space Phys. 17, 705, 1979. Google Scholar
  108. [108]
    Siren, J. C.: Dispersive auroral hiss, Nature 238, 118, 1972. Google Scholar
  109. [109]
    Siren, J. C.: Fast hisslers in substorms, J. Geophys. Res. 80, 93, 1975.Google Scholar
  110. [110]
    Smith, R. L.: An explanation of subprotonospheric whistlers, J. Geophys. Res. 69, 5019, 1964. Google Scholar
  111. [111]
    Smith, R. L. and J. J. Angerami: Magnetospheric properties deduced from OGO 1 observations of ducted and non-ducted whistlers, J. Geophys. Res. 73, 1, 1968. Google Scholar
  112. [112]
    Smith, R. L., R. A. Helliwell, and I. Yabroff: A theory of trapping of whistlers in field-aligned columns of enhanced ionization, J. Geophys. Res. 65, 815, 1960. Google Scholar
  113. [113]
    Sojka, J. J., L. Zhu, M. David, and R. W. Schunk: Modeling the evolution of meso-scale ionospheric irregularities at high latitudes, Geophys. Res. Lett. 27, 3595, 2000. Google Scholar
  114. [114]
    Sonwalkar, V. S.: New Signal Analysis Techniques and Their Applications to Space Physics, Ph.D. Thesis, Stanford University, June 1986. Google Scholar
  115. [115]
    Sonwalkar, V. S.: Magnetospheric LF- VLF-, and ELF-waves, in: Handbook of Atmospheric Electrodynamics, H. Volland (Ed.), CRC Press, Boca Raton, Florida, USA, 1995. Google Scholar
  116. [116]
    Sonwalkar, V. S. and U. S. Inan: Measurements of Siple transmitter on the DE 1 satellite: Wave normal direction and antenna effective length, J. Geophys. Res. 91, 154, 1986. Google Scholar
  117. [117]
    Sonwalkar, V. S. and U. S. Inan: Wave normal direction and spectral properties of whistler-mode hiss observed on the DE-1 satellite, J. of Geophys. Res. 93, 7493, 1988. Google Scholar
  118. [118]
    Sonwalkar, V. S., and Inan, U. S., Lightning as an embryonic source of VLF hiss, J. Geophys. Res. 94, 6986, 1989. Google Scholar
  119. [119]
    Sonwalkar, V.S. and J. Harikumar: An explanation of ground obesrvations of auroral hiss: Role of density depletions and meter-scale irregularities J. Geophys. Res. 105, 18,867, 2000. Google Scholar
  120. [120]
    Sonwalkar, V. S., T. F. Bell, R. A. Helliwell, and U. S. Inan: Direct multiple path propagation: A fundamental property of non-ducted VLF waves in the magnetosphere, J. of Geophys. Res. 89, 2823, 1984. Google Scholar
  121. [121]
    Sonwalker, V. S., U. S. Inan, T. L. Aggson, W. M. Farrell, and R. Pfa.: Focusing of non-ducted whistlers by the equatorial anomaly, J. Geophys. Res. 100, 7783, 1995. CrossRefGoogle Scholar
  122. [122]
    Sonwalkar, V. S., U. S. Inan, T. F. Bell, R. A. Helliwell, V. M. Chmyrev, Ya. P. Sobolev, O. Ya. Ovcharenko, and V. Selegej: Simultaneous observations of VLF ground transmitter signals on the DE 1 and COSMOS 1809 satellites: Detection of a magnetospheric caustic and a duct, J. Geophys. Res. 99, 17,511, 1994. Google Scholar
  123. [123]
    Sonwalkar V. S. et al.: Diagnostics of magnetospheric electron density and irregularities at altitudes <5000 km using whistler and Z mode echoes from radio sounding on the IMAGE satellite, J. Geophys. Res. 109, A11212, 2004. Google Scholar
  124. [124]
    Stix, T. H.: Waves in Plasmas, American Inst. Physics, New York, 1992. Google Scholar
  125. [125]
    Storey, L. R. O.: An investigation of whistling atmospherics, Philos. Trans. R. Soc. London, Ser. A. 246, 113, 1953. Google Scholar
  126. [126]
    Storey, L. R. O., F. Lefeuvre, M. Parrot, L. Cairo, and R. R. Anderson: Initial survey of the wave distribution functions for plasmaspheric hiss observed by ISEE 1, J. Geophys. Res. 96, 19,469, 1991. Google Scholar
  127. [127]
    Strangeways, H. J. and M. J. Rycroft: Systematic errors in VLF direction- finding of whistler ducts, II, J. Atmos. Terr. Phys. 42, 1009, 1980.CrossRefGoogle Scholar
  128. [128]
    Strangeways, H. J., M. J. Rycroft, and M. J. Jarvis: Multi-station VLF direction-finding measurements in eastern Canada, J. Atmos. Terr. Phys. 44, 509, 1982. CrossRefGoogle Scholar
  129. [129]
    Thorne, R. M. and R. B. Horne: Landau damping of magnetospherically re.ected whistlers, J. Geophys. Res., 99, 17, 249, 1994. Google Scholar
  130. [130]
    Thorne, R. M., E. J. Smith, R. K. Burton, and R. E. Holzer: Plasmaspheric hiss, J. Geophys. Res., 78, 1581, 1973. Google Scholar
  131. [131]
    Thorne, R. M., S. R. Church, and D. J. Gorney: On the origin of plasmaspheric hiss: The importance of wave propagation and plasmapause, J. Geophys. Res. 84, 5241, 1979. CrossRefGoogle Scholar
  132. [132]
    Thompson, R. J. and R. L. Dowden: Ionospheric whistler propagation, J. Atmos. Terr. Phys. 40, 215, 1978. CrossRefGoogle Scholar
  133. [133]
    Titova, E. E., V. I. Di, V. E. Yurov, O. M. Raspopov, V. YuTrakhtengertz, F. Jiricek, and P. Triska: Interaction between VLF waves and turbulent ionosphere, Geophys. Res. Lett. 11, 323, 1984. Google Scholar
  134. [134]
    Voss, H. D., W. L. Imhof, J. Mobilia, E. E. Gaines, M. Walt, U. S. Inan, R. A. Helliwell, D. L. Carpenter, J. P. Katsufrakis, H. C. Chang: Lightning induced electron precipitation, Nature 312, 740, 1984. Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • V.S. Sonwalkar
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of Alaska FairbanksFairbanksUSA

Personalised recommendations