Advertisement

Tests of Time Evolutions in Deterministic Models, by Random Sampling of Space Plasma Phenomena

  • H.L. Pécseli
  • J. Trulsen
Part of the Lecture Notes in Physics book series (LNP, volume 687)

Abstract

We discuss general ideas, which can be used for estimating models for coherent time-evolutions by random sampling of data. They turn out to be particularly useful for interpreting data from instrumented spacecraft. These “new methods” are applied to examples of localized bursts of lower-hybrid waves and correlated density depletions observed on the FREJA satellite. In particular, lower-hybrid wave collapse is investigated. The statistical arguments are based on three distinct elements. Two are purely geometric, where the chord length distribution is determined for given cavity scales, together with the probability of encountering those scales. The third part of the argument is based on the actual time variation of scales predicted by the collapse model. The cavities are assumed to be uniformly distributed along the spacecraft trajectory, and it is assumed that they are encountered with equal probability at any time during the dynamical evolution. Cylindrical and ellipsoidal cavity models are discussed. It turns out that the collapsing cavity model can safely be ruled out on the basis of disagreement of data with the predicted cavity lengths and evolution time scales. Application to Langmuir wave collapse is suggested in order to check its reality and relevance.

Keywords

Impact Parameter Deterministic Model Chord Length Collapse Model Spacecraft Orbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Pécseli, H. L. et al.: J. Geophys. Res. 101, 5299, 1996. Google Scholar
  2. [2]
    Kofoed-Hansen, O., H. L. Pécseli, and J. Trulsen: Phys. Scr. 40, 280, 1989. Google Scholar
  3. [3]
    Kjus, S. H. et al.: J. Geophys. Res. 103, 26633, 1998. CrossRefGoogle Scholar
  4. [4]
    Vago, J. L. et al.: J. Geophys. Res. 97, 16935, 1992. CrossRefGoogle Scholar
  5. [5]
    Dovner, P. O., A. I. Eriksson, R. Boström, and B. Holback: Geophys. Res. Lett. 21, 1827, 1994. CrossRefGoogle Scholar
  6. [6]
    Eriksson, A. I. et al.: Geophys. Res. Lett. 21, 1843, 1994. CrossRefGoogle Scholar
  7. [7]
    Schuck, P. W., J. W. Bonnell, and P. M. J. Kintner: IEEE Trans. Plasma Sci. 31, 1, 2003. CrossRefGoogle Scholar
  8. [8]
    Høymork, S. H. et al.: J. Geophys. Res. 105, 18519, 2000. CrossRefGoogle Scholar
  9. [9]
    Musher, S. L. and B. I. Sturman: Pis’ma Zh. Eksp. Teor. Fiz. 22, 537, 1975, english translation in: JETP lett. 22, 265 1975. Google Scholar
  10. [10]
    Sotnikov, V. I., V. D. Shapiro, and V. I. Shevchenko:, Fiz. Plazmy 4, 450, 1978. Google Scholar
  11. [11]
    Shapiro, V. D. et al.: Phys. Fluids B5, 3148, 1993. Google Scholar
  12. [12]
    Robinson, P. A.: Phys. Fluids B3, 545, 1991. Google Scholar
  13. [13]
    Skjæraasen, O. et al.: Phys. Plasmas 6, 1072, 1999. Google Scholar
  14. [14]
    McBride, J. B., E. Ott, J. P. Boris, and J. H. Orens: Phys. Fluids 15, 2367, 1972. CrossRefGoogle Scholar
  15. [15]
    Krasnosel’skikh, V. V. and V. I. Sotnikov: Fiz. Plazmy 3, 872, 1977, see also Sov. J. Plasma Phys. 3, 491, 1977. Google Scholar
  16. [16]
    Johnsen, H., H. L. Pécseli, and J. Trulsen: Phys. Fluids 30, 2239, 1987. CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • H.L. Pécseli
    • 1
    • 3
  • J. Trulsen
    • 2
    • 3
  1. 1.Institute of PhysicsUniversity of OsloOsloNorway
  2. 2.Institute of Theoretical AstrophysicsUniversity of OsloOsloNorway
  3. 3.Centre for Advanced StudyOsloNorway

Personalised recommendations