Plasma Waves Near Reconnection Sites

  • A. Vaivads
  • Yu. Khotyaintsev
  • M. André
  • R.A. Treumann
Part of the Lecture Notes in Physics book series (LNP, volume 687)


Reconnection sites are known to be regions of strong wave activity covering a broad range of frequencies from below the ion gyrofrequency to above the electron plasma frequency. Here we explore the observations near the reconnection sites of high frequency waves, frequencies well above the ion gyrofrequency. We concentrate on in situ satellite observations, particularly on recent observations by the Cluster spacecraft and, where possible, compare the observations with numerical simulations, laboratory experiments and theoretical predictions. Several wave modes are found near the reconnection sites: lower hybrid drift waves, whistlers, electron cyclotron waves, Langmuir/upper hybrid waves, and solitary wave structures. We discuss the role of these waves in the reconnection onset and supporting the reconnection, in anomalous resistivity and diffusion, as well as a possibility for using these waves as a tool for remote sensing of reconnection sites.


Solitary Wave Current Sheet Plasma Wave Langmuir Wave High Frequency Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Akimoto, K., S.P. Gary, and N. Omidi: Electron/ion whistler instabilities and magnetic noise bursts, J. Geophys. Res. 92, 11209, 1987. Google Scholar
  2. [2]
    Anderson, R.R., T.E. Eastman, C.C. Harvey, M.M. Hoppe, B.T. Tsurutani, and J. Etcheto: Plasma waves near the magnetopause, J. Geophys. Res. 87, 2087, 1982. Google Scholar
  3. [3]
    André, M., R. Behlke, J.-E. Wahlund, A. Vaivads, A.-I. Eriksson, A. Tjulin, T.D. Carozzi, C. Cully, G. Gustafsson, D. Sundkvist, Y. Khotyaintsev, N. Cornilleau-Wehrlin, L. Rezeau, M. Maksimovic, E. Lucek, A. Balogh, M. Dunlop, P.-A. Lindqvist, F. Mozer, A. Pedersen, and A. Fazakerley: Multispacecraft observations of broadband waves near the lower hybrid frequency at the earthward edge of the magnetopause, Ann. Geophysicææ 19, 1471, 2001. Google Scholar
  4. [4]
    André, M., A. Vaivads, S.C. Buchert, A.N. Fazakerley, and A. Lahi.: Thin electron-scale layers at the magnetopause, Geophys. Res. Lett. 31, 3803, 2004. Google Scholar
  5. [5]
    Aschwanden, M.J.: Physics of the Solar Corona: An Introduction, Springer, 2004. Google Scholar
  6. [6]
    Bale, S.D., F.S. Mozer, and T. Phan: Observation of lower hybrid drift instability in the diffusion region at a reconnecting magnetopause, Geophys. Res. Lett. 29, 33, 2002. CrossRefGoogle Scholar
  7. [7]
    Bastian, T.S., A.O. Benz, and D.E. Gary: Radio Emission from Solar Flares, Ann. Rev. Astron. Astrophys. 36, 131, 1998. CrossRefGoogle Scholar
  8. [8]
    Birn, J., J.F. Drake, M.A. Shay, B.N. Rogers, R.E. Denton, M. Hesse, M. Kuznetsova, Z.W. Ma, A. Bhattacharjee, A. Otto, and P.L. Pritchett: Geospace Environmental Modeling (GEM) magnetic reconnection challenge, J. Geophys. Res. 106, 3715, 2001. CrossRefGoogle Scholar
  9. [9]
    Cane, H.V., W.C. Erickson, and N.P. Prestage: Solar flares, type III radio bursts, coronal mass ejections, and energetic particles, J. Geophys. Res. 107, 14, 2002. Google Scholar
  10. [10]
    Cattell, C., J. Dombeck, J. Wygant, J.F. Drake, M. Swisdak, M.L. Goldstein, W. Keith, A. Fazakerley, M. André, E. Lucek, and A. Balogh: Cluster observations of electron holes in association with magnetotail reconnection and comparison to simulations, J. Geophys. Res. 110, 1211, 2005. Google Scholar
  11. [11]
    Daughton, W., G. Lapenta, and P. Ricci: Nonlinear Evolution of the Lower-Hybrid Drift Instability in a Current Sheet, Phys. Rev. Lett. 93, 105004, 2004. CrossRefGoogle Scholar
  12. [12]
    Deng, X.H., H. Matsumoto, H. Kojima, T. Mukai, R.R. Anderson, W. Baumjohann, and R. Nakamura: Geotail encounter with reconnection diffusion region in the Earth’s magnetotail: Evidence of multiple X lines collisionless reconnection?, J. Geophys. Res. 109, 5206, 2004. CrossRefGoogle Scholar
  13. [13]
    Drake, J.F., M. Swisdak, C. Cattell, M.A. Shay, B.N. Rogers, and A. Zeiler: Formation of electron holes and particle energization during magnetic r, Science 299, 873, 2003. Google Scholar
  14. [14]
    Farrell, W.M., M.D. Desch, M.L. Kaiser, and K. Goetz: The dominance of electron plasma waves near a reconnection X-line region, Geophys. Res. Lett. 29, 8, 2002. Google Scholar
  15. [15]
    Güdel, M.: Stellar Radio Astronomy: Probing Stellar Atmospheres from Protostars to Giants, Ann. Rev. Astron. Astrophys. 40, 217, 2002. Google Scholar
  16. [16]
    Gurnett, D.A., L.A. Frank, and R.P. Lepping: Plasma waves at the distant magnetotail, J. Geophys. Res. 81, 6059, 1976.CrossRefGoogle Scholar
  17. [17]
    Hoshino, M., T. Mukai, T. Terasawa, and I. Shinohara: Suprathermal electron acceleration in magnetic reconnection, J. Geophys. Res. 106, 25979, 2001. Google Scholar
  18. [18]
    Jaroschek, C.H., R.A. Treumann, H. Lesch, and M. Scholer: Fast reconnection in relativistic pair plasmas: Analysis of particle acceleration in self-consistent full-particle simulations, Phys. Plasmas 11, 1151, 2004a. Google Scholar
  19. [19]
    Jaroschek, C.H., H. Lesch, and R.A. Treumann, Relativistic kinetic reconnection as the possible source mechanism for high variability and flat spectra in extragalactic radio sources, Astrophys. J. 605, L9, 2004b. Google Scholar
  20. [20]
    Ji, H., S. Terry, M. Yamada, R. Kulsrud, A. Kuritsyn, and Y. Ren: Electromagnetic Fluctuations during Fast Reconnection in a Laboratory Plasma, Phys. Rev. Lett. 92, 115001, 2004. Google Scholar
  21. [21]
    Kellogg, P.J. and S.D. Bale: Nearly monochromatic waves in the distant tail of the Earth, J. Geophys. Res. 109, 4223, 2004. CrossRefGoogle Scholar
  22. [22]
    Khotyaintsev, Y., A. Vaivads, Y. Ogawa, B. Popielawska, M. André, S. Buchert, P. Décréau, B. Lavraud, and H. Rème: Cluster observations of high-frequency waves in the exterior cusp, Ann. Geophysicæ 22, 2403, 2004. Google Scholar
  23. [23]
    Kojima, H., H. Furuya, H. Usui, and H. Matsumoto: Modulated electron plasma waves observed in the tail lobe: Geotail waveform observations, Geophys. Res. Lett. 24, 3049, 1997. Google Scholar
  24. [24]
    Kojima, H., K. Ohtsuka, H. Matsumoto, Y. Omura, R.R. Anderson, Y. Saito, T. Mukai, S. Kokubun, and T. Yamamoto: Plasma waves in slow-mode shocks observed by Geotail Spacecraft, Adv. Space Res. 24, 51, 1999. Google Scholar
  25. [25]
    LaBelle, J., R.A. Treumann, G. Haerendel, O.H. Bauer, and G. Paschmann: AMPTE IKRM obsevations of waves assosicated with flux transfer events in the magnetosphere J. Geophys. Res., 92, 5827, 1987. Google Scholar
  26. [26]
    LaBelle, J. and R.A. Treumann: Plasma waves at the dayside magnetopause, Space Sci. Rev., 47, 175, 1988. CrossRefGoogle Scholar
  27. [27]
    LaBelle, J. and R.A. Treumann: Auroral radio emissions, 1. Hisses, roars, and bursts, Space Sci. Rev. 101, 295, 2002. CrossRefGoogle Scholar
  28. [28]
    Menietti, J.D., J.S. Pickett, G.B. Hospodarsky, J.D. Scudder, and D.A. Gurnett: Polar observations of plasma waves in and near the dayside magnetopause/ magnetosheath, Planet. Space Sci. 52, 1321, 2004. CrossRefGoogle Scholar
  29. [29]
    Omura, Y., H. Matsumoto, T. Miyake, and H. Kojima: Electron beam instabilities as generation mechanism of electrostatic solitary waves in the magnetotail, J. Geophys. Res. 101, 2685, 1996. CrossRefGoogle Scholar
  30. [30]
    Pritchett, P.L.: Collisionless magnetic reconnection in a three-dimensional open system, J. Geophys. Res., 106, 25961, 2001. CrossRefGoogle Scholar
  31. [31]
    Pritchett, P.L. and F.V. Coroniti: Three-dimensional collisionless magnetic reconnection in the presence of a guide field, J. Geophys. Res. 109, 1220, 2004. CrossRefGoogle Scholar
  32. [32]
    Sakai, J.I., T. Kitamoto, and S. Saito: Simulation of Solar Type III Radio Bursts from a Magnetic Reconnection Region, Astrophys. J. Lett. 622, L157, 2005. Google Scholar
  33. [33]
    Scholer, M., I. Sidorenko, C.H. Jaroschek, R.A. Treumann, and A. Zeiler: Onset of collisionless magnetic reconnection in thin current sheets: Three-dimensional particle simulations, Phys. Plasmas 10, 3521, 2003. CrossRefGoogle Scholar
  34. [34]
    Shay, M.A., J.F. Drake, B.N. Rogers, and R.E. Denton: Alfvénic collisionless magnetic reconnection and the Hall term, J. Geophys. Res. 106, 3759, 2001. CrossRefGoogle Scholar
  35. [35]
    Silin, I., J. Büchner, and A. Vaivads: Anomalous resistivity due to nonlinear lower-hybrid drift waves, Phys. Plasmas 12, submitted, 2005. Google Scholar
  36. [36]
    Stenberg, G., T. Oscarsson, M. André, M. Backrud, Y. Khotyaintsev, A. Vaivads, F. Sahraoui, N. Cornilleau-Wehrlin, A. Fazakerley, R. Lundin, and P. Décréau: Electron-scale structures indicating patchy reconnection at the magnetopause? J. Geophys. Res. 110, submitted, 2005. Google Scholar
  37. [37]
    Vaivads, A., M. André, S.C. Buchert, J.-E. Wahlund, A.N. Fazakerley, and N. Cornilleau-Wehrlin: Cluster observations of lower hybrid turbulence within thin layers at the magnetopause, Geophys. Res. Lett. 31, 3804, 2004. Google Scholar
  38. [38]
    Vaivads, A., Y. Khotyaintsev, M. André, A. Retin`o, S.C. Buchert, B.N. Rogers, P. Décréau, G. Paschmann, and T.D. Phan: Structure of the Magnetic Reconnection diffusion Region from Four-Spacecraft Observations, Phys. Rev. Lett. 93, 105001, 2004. Google Scholar
  39. [39]
    Zhang, Y., H. Matsumoto, and H. Kojima: Whistler mode waves in the magnetotail, J. Geophys. Res. 104, 28633, 1999. CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • A. Vaivads
    • 1
  • Yu. Khotyaintsev
    • 1
  • M. André
    • 1
  • R.A. Treumann
    • 2
    • 3
  1. 1.Swedish Institute of Space PhysicsUppsalaSweden
  2. 2.Geophysics Section, The University of MunichMunichGermany
  3. 3.Department of Physics and AstronomyDartmouth CollegeHanoverUSA

Personalised recommendations