Fuzzy Sets

Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 196)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

2.6 References

  1. 1.
    G. Bortolon and R. Degani: A Review of Some Methods for Ranking Fuzzy Subsets, Fuzzy Sets and Systems, 15(1985)1–19.MathSciNetCrossRefGoogle Scholar
  2. 2.
    J.J. Buckley: Ranking Alternatives Using Fuzzy Numbers, Fuzzy Sets and Systems, 15(1985)21–31.zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    J.J. Buckley: Fuzzy Hierarchical Analysis, Fuzzy Sets and Systems, 17(1985)233–247.zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    J.J. Buckley and E. Eslami: Introduction to Fuzzy Logic and Fuzzy Sets, Physica-Verlag, Heidelberg, Germany, 2002.Google Scholar
  5. 5.
    J.J. Buckley and Y. Hayashi: Can Neural Nets be Universal Approximators for Fuzzy Functions?, Fuzzy Sets and Systems, 101(1999)323–330.MathSciNetCrossRefGoogle Scholar
  6. 6.
    J.J. Buckley and Y. Qu: On Using α-cuts to Evaluate Fuzzy Equations, Fuzzy Sets and Systems, 38(1990)309–312.MathSciNetCrossRefGoogle Scholar
  7. 7.
    P.T. Chang and E.S. Lee: Fuzzy Arithmetic and Comparison of Fuzzy Numbers, in: M. Delgado, J, Kacprzyk, J.L. Verdegay and M.A. Vila (eds.), Fuzzy Optimization: Recent Advances, Physica-Verlag, Heidelberg, Germany, 1994, 69–81.Google Scholar
  8. 8.
    S.J. Chen and C.L. Hwang: Fuzzy Multiple Attribute Decision Making, Springer-Verlag, Heidelberg, Germany, 1992.Google Scholar
  9. 9.
    D. Dubois, E. Kerre, R. Mesiar and H. Prade: Fuzzy Interval Analysis, in: D. Dubois and H. Prade (eds.), Fundamentals of Fuzzy Sets, The Handbook of Fuzzy Sets, Kluwer Acad. Publ., 2000, 483–581.Google Scholar
  10. 10.
    G.J. Klir and B. Yuan: Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice Hall, Upper Saddle River, N.J., 1995.Google Scholar
  11. 11.
    V. Kreinovich, L. Longpre and J.J. Buckley: Are There Easy-to-Check Necessary and Sufficient Conditions for Straightforward Interval Computations to be Exact?, Reliable Computing, 9(2003)349–358.MathSciNetCrossRefGoogle Scholar
  12. 12.
    R.E. Moore: Methods and Applications of Interval Analysis, SIAM Studies in Applied Mathematics, Philadelphia, 1979.Google Scholar
  13. 13.
    A. Neumaier: Interval Methods for Systems of Equations, Cambridge University Press, Cambridge, U.K., 1990.Google Scholar
  14. 14.
    X. Wang and E.E. Kerre: Reasonable Properties for the Ordering of Fuzzy Quantities (I), Fuzzy Sets and Systems, 118(2001)375–385.MathSciNetCrossRefGoogle Scholar
  15. 15.
    X. Wang and E.E. Kerre: Reasonable Properties for the Ordering of Fuzzy Quantities (II), Fuzzy Sets and Systems, 118(2001)387–405.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Personalised recommendations