Skip to main content

Entanglement and Quantum Error Correction

  • Chapter
Quantum Computation and Information

Part of the book series: Topics in Applied Physics ((TAP,volume 102))

Abstract

Quantum entanglement is a fundamental topic in quantum information that has various aspects. In order to discover its essence, we studied this topic from various viewpoints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. H. Bennett, S. J. Wiesner: Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states, Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, R. A. Peres, W. K. Wootters: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. P. W. Shor: Fault-tolerant quantum computation, in Proceedings, 37th Annual Symposium on Fundations of Computer Science (IEEE Press, Los Alamos, CA 1996) pp. 56–65

    Google Scholar 

  4. C. H. Bennett, H. J. Bernstein, S. Popescu, B. Schumacher: Concentrating partial entanglement by local operations, Phys. Rev. A 53, 2046 (1996) quantph/9511030

    Article  ADS  Google Scholar 

  5. M. Hayashi, M. Koashi, K. Matsumoto, F. Morikoshi, A. Winter: Error exponents for entanglement concentration, J. Phys. A: Math. Gen. 36, 527–553 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. M. Hayashi, K. Matsumoto: Universal distortion-free entanglement concentration, in Proceedings of the International Symposium on Information Theory 2004 (ISIT2004) (2004) p. 323

    Google Scholar 

  7. L. M. Duan, G. Giedke, J. I. Cirac, P. Zoller: Inseparability criterion for continuous variable systems, Phys. Rev. Lett. 84, 2722–2725 (2000)

    Article  ADS  Google Scholar 

  8. R. Simon: Peres-Horodecki separability criterion for continuous variable systems, Phys. Rev. Lett. 84, 2726–2729 (2000)

    Article  ADS  Google Scholar 

  9. T. Hiroshima: Decoherence and entanglement in two-mode squeezed vacuum states, Phys. Rev. A 63, 022305 (2001)

    Article  ADS  Google Scholar 

  10. X. B. Wang, K. Matsumoto, A. Tomita: Detecting the inseparability and distillability of continuous variable state in fock space, Phys. Rev. Lett. 87, 137903 (2001)

    Article  ADS  Google Scholar 

  11. X. B. Wang: Theorem for the beam splitter entangler, Phys. Rev. A 66, 024303 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  12. M. S. Kim, W. Son, V. Buzek, P. L. Knight: Entanglement by a beam splitter: Nonclassicality as a prerequisite for entanglement, Phys. Rev. A 56, 032323 (2002)

    Article  ADS  Google Scholar 

  13. X. B. Wang: Properties of a beam-splitter entangler with gaussian input states, Phys. Rev. A 66, 064304 (2002)

    Article  ADS  Google Scholar 

  14. T. Hiroshima, M. Hayashi: Finding a maximally correlated state: Simultaneous Schmidt decomposition of bipartite pure states, Phys. Rev. A 70, 30302(R) (2004)

    Article  ADS  Google Scholar 

  15. E. M. Rains: A semidefinite program for distillable entanglement, IEEE Trans. Inf. Theory 47, 2921–2933 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, W. K. Wootters: Mixedstate entanglement and quantum error correction, Phys. Rev. A 54, 3824–3851 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  17. M. Hamada: Exponential lower bound on the highest fidelity achievable by quantum error-correcting codes, Phys. Rev. A 65, 052305 (2002)

    Article  ADS  Google Scholar 

  18. M. Hamada: Lower bounds on the quantum capacity and highest error exponent of general memoryless channels, IEEE Trans. Information Theory pp. 2547–2557 (2002)

    Google Scholar 

  19. M. Hamada: A lower bound on the quantum capacity of channels with correlated errors, J. Math. Phys. 43, 4382–4390 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. M. Hamada: Information rates on the quantum capacity and highest error exponent of general memoryless channels, IEEE Trans. Information Theory 51, 4263–4277 (2005)

    Article  MathSciNet  Google Scholar 

  21. B. Schumacher, M. A. Nielsen: Quantum data processing and error correction, Phys. Rev. A 54, 2629 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  22. M. Hamada: Teleportation and entanglement distillation in the presence of correlation among bipartite mixed states, Phys. Rev. A 68, 012301 (2003)

    Article  ADS  Google Scholar 

  23. M. Hamada: Notes on the fidelity of symplectic quantum error-correcting codes, Int. J. Quant. Inform. 1, 443–463 (2003)

    Article  MATH  Google Scholar 

  24. M. Hamada: Reliability of Calderbank-Shor-Steane codes and security of quantum key distribution, J. Phys. A: Math. Gen. 37, 8303–8328 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. P. Shor, J. Preskill: Simple proof of security of the BB84 quantum key distribution protocol, Phys. Rev. Lett. 85, 441–444 (2000)

    Article  ADS  Google Scholar 

  26. H. Fan, K. Matsumoto, H. Imai: Quantify entanglement by concurrence hierarchy, J. Phys. A: Math. Gen. 36, 4151–4158 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. B. Schumacher: Quantum coding, Phys. Rev. A pp. 2738–2747 (1995)

    Google Scholar 

  28. M. Horodecki: Limits for compression of quantum information carried by ensembles of mixed states, Phys. Rev. A 57, 3364–3369 (1997)

    Article  ADS  Google Scholar 

  29. M. Horodecki: Optimal compression for mixed signal states, Phys. Rev. A 61, 052309 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  30. B. M. Terhal, M. Horodecki, D. W. Leung, D. P. DiVincenzo: The entanglement of purification, J. Math. Phys. 43, 4286 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. H.-K. Lo, S. Popescu: Classical communication cost of entanglement manipulation: Is entanglement an interconvertible resource?, Phys. Rev. Lett. 83, 1459 (1999)

    Article  ADS  Google Scholar 

  32. M. Hayashi: Optimal visible compression rate for mixed states is determined by entanglement purification, to appear in Phys. Rev. A., quant-ph/0511267

    Google Scholar 

  33. D. Avis, H. Imai, T. Ito, Y. Sasaki: Two-party Bell inequalities derived from combinatorics via triangular elimination, J. Phys. A: Math. Gen. 38, 10971–10987 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. I. Pitowsky: The range of quantum probability, J. Math. Phys. 27, 1556–1565 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  35. The impossibility of pseudo-telepathy without quantum entanglement, in V. Galliard, A. Tapp, S. Wolf (Eds.): (Proceedings of ISIT 2003) p. 457, quantph/0211011

    Google Scholar 

  36. D. Avis, J. Hasegawa, Y. Kikuchi, Y. Sasaki: A quantum protocol to win the graph colouring game on all hadamard graphs, IEICE Transactions on Fundamentals E89-A, 1318–1381 (2006)

    Google Scholar 

  37. P. Frankl: Orthogonal vectors in the n-dimensional cube and codes with missing distances, Combinatorica 6(3), 279 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  38. C. D. Godsil, M. W. Newman: Colouring an orthogonality graph, e-Print math.CO/0509151 URL arXiv.org

    Google Scholar 

  39. A. Miyake, M. Wadati: Multipartite entanglement and hyperdeterminants, Quant. Inf. Comp. 2, 540–555 (2002)

    MATH  MathSciNet  Google Scholar 

  40. A. Miyake: Classification of multipartite entangled states by multidimensional determinants, Phys. Rev. A 67, 012108 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  41. A. Miyake, F. Verstraete: Multipartite entanglement in 2 × 2 × n quantum systems, Phys. Rev. A 69, 012101 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  42. M. A. Nielsen: Conditions for a class of entanglement transformations, Phys. Rev. Lett. 83, 436–439 (1999)

    Article  ADS  Google Scholar 

  43. G. Giedke, J. Eisert, J. I. Cirac, M. B. Plenio: Entanglement transformations of pure Gaussian states, Quant. Inf. Comp. 3, 211 (2003)

    MathSciNet  MATH  Google Scholar 

  44. M. Owari, K. Matsumoto, M. Murao: Entanglement convertibility for infinitedimensional pure bipartite states, Phys. Rev. A 70, 050301(R) (2004)

    Article  MathSciNet  ADS  Google Scholar 

  45. B. S. Shi, A. Tomita: Teleportation of an unknown state by W state, Phys. Lett. A 296, 161–164 (2002)

    MATH  MathSciNet  ADS  Google Scholar 

  46. B. S. Shi, A. Tomita: Remote state preparation of an entangled state, J. Opt. B: Quantum Semiclass 4, 380–382 (2002)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hiroshima, T., Hayashi, M. (2006). Entanglement and Quantum Error Correction. In: Imai, H., Hayashi, M. (eds) Quantum Computation and Information. Topics in Applied Physics, vol 102. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-33133-6_5

Download citation

Publish with us

Policies and ethics