Skip to main content

Query Complexity of Quantum Biased Oracles

  • Chapter
  • 1699 Accesses

Part of the book series: Topics in Applied Physics ((TAP,volume 102))

Abstract

In this Chapter, our focus is the efficiency of computation with quantum oracles whose answers are correct only with probability 1/2 + ε. In real-world applications, quantum oracles might be realized from quantumization of probabilistic algorithms which are object to error in the success probability. Thus, designing efficient quantum algorithms for biased oracles is important. The first result to discuss such biased oracles was by Adcock and Cleve, who relate the efficiency of computation with biased oracles with the difficulty of inverting one-way functions. They showed a quantum algorithm for solving the so-called Goldreich-Levin problem, a result which has a special implication in the cryptographic setting. In this Chapter, we prove the optimality of their algorithm and show a general method for designing robust algorithms querying biased oracles for solving various problems. The method is optimal in the sense that the additional number of queries to biased oracles matches the lower bounds, which are also part of our results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Goldreich: A fast quantum mechanical algorithm for database search, in Proc. 28th Ann. ACM Symp. on Theory of Computing (STOC 1996) (1996) pp. 212–219

    Google Scholar 

  2. D. Biron, O. Biham, E. Biham, M. Grassl, D. A. Lidar: Generalized grover search algorithm for arbitrary initial amplitude distribution, in Proceedings of the 1st NASA International Conference on Quantum Computing and Quantum Communication, vol. 1509, LNCS (Springer, Berlin, Heidelberg 1998) pp. 140–147

    Google Scholar 

  3. M. Boyer, G. Brassard, P. Høyer, A. Tapp: Tight bounds on quantum searching, Fortschritte der Physik 46, 493–505 (1998)

    Article  ADS  Google Scholar 

  4. D. P. Chi, J. Kim: Quantum database searching by a single query, in Proceedings of the 1st NASA International Conference on Quantum Computing and Quantum Communication, vol. 1509, LNCS (Springer, Berlin, Heidelberg 1998) pp. 148–151

    Google Scholar 

  5. L. K. Grover: A framework for fast quantum mechanical algorithms, in Proceedings of the 30th ACM Symposium on Theory of Computing (1998) pp. 53–62

    Google Scholar 

  6. L. K. Grover: Rapid sampling through quantum computing, in Proceedings of the 32th ACM Symposium on Theory of Computing (2000) pp. 618–626

    Google Scholar 

  7. G. Brassard, P. Høyer, M. Mosca, A. Tapp: Quantum amplitude amplification and estimation, in Quantum Computation and Quantum Information: A Millennium Volume, AMS Contemporary Mathematics Series (2002) p. 305

    Google Scholar 

  8. H. Buhrman, C. Dürr, M. Heiligman, P. Høyer, F. Magniez, M. Santha, R. de Wolf: Quantum algorithms for element distinctness, in Proceedings of the 16th IEEE Annual Conference on Computational Complexity (CCC’01) (2001) pp. 131–137

    Google Scholar 

  9. A. Ambainis: Quantum walk algorithm for element distinctness, in Proceedings of the 45th Symposium on Foundations of Computer Science (2004) pp. 22–31

    Google Scholar 

  10. Y. Shi: Quantum lower bounds for the collision and the element distinctness problems, in FOCS’02 Proceedings (2002) pp. 513–519

    Google Scholar 

  11. S. Aaronson, A. Ambainis: Quantum search of spatial regions, in Proceedings of the 44th Symposium on Foundations of Computer Science (2003) pp. 200–209

    Google Scholar 

  12. F. Magniez, M. Santha, M. Szegedy: Quantum algorithms for the triangle problem, in Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms (2005)

    Google Scholar 

  13. C. Dürr, M. Heiligman, P. Høyer, M. Mhalla: Quantum query complexity of some graph problems, in Proceedings of the 31st International Colloquium on Automata, Languages and Programming, vol. 3142, LNCS (2004) pp. 481–493

    Article  MATH  Google Scholar 

  14. A. Ambainis, K. Iwama, A. Kawachi, H. Masuda, R. H. Putra, S. Yamashita: Quantum identification of Boolean oracles, in Proceedings of the 21st Annual Symposium on Theoretical Aspects of Computer Science, vol. 2996, LNCS (2004) pp. 105–116

    MathSciNet  Google Scholar 

  15. A. Blum, A. Kalai, H. Wasserman: Noise-tolerant learning, the parity problem and the statistical query model, in Proc. 32nd Ann. ACM Symp. on Theory of Computing (STOC) (2000) pp. 435–440

    Google Scholar 

  16. M. Szegedy, X. Chen: Computing Boolean functions from multiple faulty copies of input bits, in S. Rajsbaum (Ed.): Proc. 5th Latin American Symp. Theoretical Informatics (LATIN) (2002) pp. 539–553

    Google Scholar 

  17. U. Feige, P. Raghavan, D. Peleg, E. Upfal: Computing with noisy information, SIAM J. Comput. 23, 1001–1018 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. P. Høyer, M. Mosca, R. de Wolf: Quantum search on bounded-error inputs, in ICALP’ 03 Proceedings, vol. 2719, LNCS (Springer, Berlin, Heidelberg 2003) pp. 291–299

    Google Scholar 

  19. H. Buhrman, I. Newman, H. Röhrig, R. de Wolf: Robust quantum algorithms and polynomials, in Proc. of the 22nd Symp. on Theoretical Aspects of Computer Science, vol. 3404, LNCS (2005) pp. 593–604

    MATH  Google Scholar 

  20. M. Adcock, R. Cleve: A quantum Goldreich-Levin theorem with cryptographic applications, in STACS’02 Proceedings, vol. 2285, LNCS (Springer, Berlin, Heidelberg 2002) pp. 323–334

    Google Scholar 

  21. A. Ambainis: Quantum lower bounds by quantum arguments, J. Comput. Syst. Sci. 64, 750–767 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. O. Goldreich, L. Levin: Hard-core predicates for any one-way function, in Proc. 21st Ann. ACM Symp. on Theory of Computing (STOC 1989) (1998) pp. 25–32

    Google Scholar 

  23. E. Bernstein, U. Vazirani: Quantum complexity theory, SIAM J. Comput. 26, 1411–1473 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  24. B. Terhal, J. Smolin: Single quantum querying of a database, Phys. Rev. A 58, 1822–1826 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  25. L. A. Levin: One-way functions and pseudorandom generators, Combinatorica 7, 357–363 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  26. O. Goldreich: Modern Cryptography, Probabilistic Proofs and Pseudorandomness (Springer, Berlin, Heidelberg 1999)

    Google Scholar 

  27. L. A. Levin: Randomness and non-determinism, J. Symbolic Logic 58, 1102–1103 (1993)

    Google Scholar 

  28. C. Bennett, E. Bernstein, G. Brassard, U. Vazirani: Strengths and weaknesses of quantum computing, SIAM J. Comput. 26, 1510–1523 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  29. K. Iwama, A. Kawachi, R. Raymond, S. Yamashita: Robust quantum algorithms for oracle identification (2004) quant-ph/0411204

    Google Scholar 

  30. K. Iwama, R. Raymond, S. Yamashita: Quantum query complexity of biased oracles, in Booklet of Workshop on ERATO Quantum Information Science 2003 (2003) pp. 33–34

    Google Scholar 

  31. H. Barnum, M. Saks: A lower bound on the quantum query complexity of read-once functions (2002) quant-ph/0201007

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Iwama, K., Raymond, R., Yamashita, S. (2006). Query Complexity of Quantum Biased Oracles. In: Imai, H., Hayashi, M. (eds) Quantum Computation and Information. Topics in Applied Physics, vol 102. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-33133-6_2

Download citation

Publish with us

Policies and ethics