Skip to main content

Fuzzy Tuning for the Docking Maneuver Controller of an Automated Guided Vehicle

  • Chapter
Multi-Objective Machine Learning

Part of the book series: Studies in Computational Intelligence ((SCI,volume 16))

Abstract

In some environments, mobile robots need to perform tasks in a precise manner. For this reason, we require obtaining good controllers in charge of these control tasks. In this work, we present a real-world application in the domain of multi-objective machine learning, which consists of an Automated Guided Vehicle (AGV), specifically, a fork-lift truck must often perform docking maneuvers to load pallets in conveyor belts. The main purpose is to improve some features of docking task as its duration, accuracy and stability, satisfying determined constraints. We propose a machine learning technique based on a multi-objective evolutionary algorithm in order to find multiple fuzzy logic controllers which optimize specific objectives and satisfy imposed constraints for docking task in charge of following up an online generated trajectory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arkin RC, MacKenzie D (1994) Temporal coordination of perceptual algorithms for mobile robot navigation. IEEE Trans. on Robotics and Automation, 10(3): 276–286

    Article  Google Scholar 

  2. Arkin RC, Murphy RR (1990) Autonomous navigation in a manufacturing environment. IEEE Trans. on Robotics and Automation, 6(4): 445–454

    Article  Google Scholar 

  3. Bonissone P, Khedkar P, Chen Y (1996) Genetic algorithms for automated tuning of fuzzy controllers: a transportation application. In: IEEE Conference on Fuzzy Systems (FUZZ-IEEE'96), 674–680

    Google Scholar 

  4. Carse B, Fogarty T, Munro A (1996) Evolving fuzzy rule based controllers using genetic algorithms. Fuzzy Sets and Systems, 80: 273–293

    Article  Google Scholar 

  5. Coello CAC (2002) Theorical and numerical constraint handling techniques used with evolutionary algorithms: A survey of the state of art. Computer Methods in Applied Mechanics and Engineering, 191(11–12):1245–1287

    Article  MATH  MathSciNet  Google Scholar 

  6. Coello CAC, Van Veldhuizen DA, Lamont GB (2002) Evolutionary algorithms for solving multi-Objective problems. Kluwer Academic Publishers, New York

    MATH  Google Scholar 

  7. Coulter RC (1992) Implementation of the Pure Pursuit Path Tracking Algorithm. Technical Report, Robotics Institute, Carnegie Mellon University

    Google Scholar 

  8. Deb K (2001) Multi-objective optimization using evolutionary algorithms. John Wiley & Sons

    Google Scholar 

  9. Deb K, Pratap A, Meyarivan T (2001) Constrained test problems for multiobjective evolutionary optimization. Lectures Notes in Computer Science, 1993:284–98

    Article  MathSciNet  Google Scholar 

  10. Eshelman LJ, Schaffer JD (1993) Real-coded genetic algorithm and interval schemata. In: Foundations of Genetic Algorithms II, Darrell Whitley L (eds), Morgan Kaufmann, 187–202

    Google Scholar 

  11. Fonseca CM, Fleming PJ (1995) An overview of evolutionary algorithms in multiobjective optimization. Evolutionary Computation, 3(1):1–16

    Google Scholar 

  12. Hoffmann F (2001) Evolutionary algorithms for fuzzy control system design. Proceedings of IEEE, 89(9): 1318–1333

    Article  Google Scholar 

  13. Homaifar A, Battle D, Tunstel E (1999) Soft computing-based design and control for mobile robot path tracking. In: Proceedings of IEEE on Computational Intelligence in Robotics and Automation (CIRA'99), 35–40

    Google Scholar 

  14. Homaifar A, McCormick E (1995) Simultaneous design of membership functions and rule sets for fuzzy controllers using genetic algorithms. IEEE Trans. on Fuzzy Systems, 3(2): 129–138

    Article  Google Scholar 

  15. Horn J, Nafpliotis N, Goldberg DE (1994) A niched Pareto genetic algorithm for multi-objective optimization. In: Proceedings of the 1st International Conference on Evolutionary Computation, 82–87

    Google Scholar 

  16. Jiménez F, Gómez Skarmeta AF, Roubos H, Babuska R (2001) Accurate, transparent, and compact fuzzy models for function approximation and dynamic modeling through multi-objective evolutionary optimization. The First International Conference on Evolutionary Multi-Criterion Optimization, 653–667, Springer-Verlag

    Google Scholar 

  17. Jiménez F, Verdegay JL (1999) Evolutionary techniques for constrained optimization problems. In: H.J. Zimmermann (eds), The 7th European Congress on Intelligent Techniques and Soft Computing (EUFIT'99), Aachen, Germany

    Google Scholar 

  18. Karr CL, Gentry EJ (1993) Fuzzy control of pH using genetic algorithms. IEEE Trans. on Fuzzy Systems, 1(1): 46–53

    Article  Google Scholar 

  19. Mamdani EH (1974) Applications of fuzzy algorithms for control a simple dynamic plant. Proceedings of IEEE, 121(12): 1585–1588

    Google Scholar 

  20. Mamdani EH, Assilian S (1975) An experiment in linguistic synthesis with fuzzy logic controller. International Journal of Man-Machine Studies, 7: 1–13

    Article  MATH  Google Scholar 

  21. Martínez-Barberá H, Cánovas JP, Zamora MA, Gómez-Skarmeta AF (2003) i-Fork: a .exible AGV system using topological and grid maps. In: Proceedings of IEEE Conference on Robotics and Automation, 2147–2152

    Google Scholar 

  22. Michalewicz Z (1996) Genetic Algorithms + Data Structures = Evolution Programs. 3rd eds., Springer-Verlag, London

    MATH  Google Scholar 

  23. Michalewicz Z, Schoenauer M (1996) Evolutionary algorithms for constrained parameter optimization problems. Evolutionary Computation, 4(1):1–32

    Google Scholar 

  24. Murata T, Ishibuchi H (1995) MOGA: Multi-objective genetic algorithms. In: Proceedings of the 2nd International Conference on Evolutionary Computing, 289–294

    Google Scholar 

  25. Ray T, Kang T, Chye S (2000) An evolutionary algorithm for constrained optimization. In: Whitley D, Goldberg D, Cantú-Paz E, Spector L, Parmee I, and Beyer HG (eds) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO'2000), 771–777. Morgan Kaufmann, San Francisco, California

    Google Scholar 

  26. Saffotti A (1997) The use of fuzzy logic for autonomous robot navigation. Soft Computing, 1(4):180–197

    Google Scholar 

  27. Saffotti A, Konolige K, Ruspini EH (1995) A multivaluted-logic approach to integrating planning and control. Artificial Intelligence, 76(1–2):481–526

    Article  Google Scholar 

  28. Schaffer JD (1985) Multi-objective optimization with vector evaluated genetic algorithms. In: Proceedings of the 1st International Conference on Genetic Algorithms, 93–100

    Google Scholar 

  29. Smith SF (1980) A learning System based on genetic adaptive algorithms. Master Thesis, Department of Computer Science, University of Pittsburgh

    Google Scholar 

  30. Surry P, Radcliffie N, Boyd I (1995) A multi-objective approach to constrained optimization of gas supply networks. In: Fogarty T (eds), In: Proceedings of the AISB-95 Workshop on Evolutionary Computing, 993: 166–180, Springer Verlag

    Google Scholar 

  31. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach. IEEE Transactions on Evolutionary Computation, 3(4): 257–271

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Lucas, J., Martinez, H., Jimenez, F. (2006). Fuzzy Tuning for the Docking Maneuver Controller of an Automated Guided Vehicle. In: Jin, Y. (eds) Multi-Objective Machine Learning. Studies in Computational Intelligence, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33019-4_25

Download citation

  • DOI: https://doi.org/10.1007/3-540-33019-4_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30676-4

  • Online ISBN: 978-3-540-33019-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics