Skip to main content

Angiotensin, Bradykinin and the Endothelium

  • Chapter
Book cover The Vascular Endothelium I

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 176/I))

Abstract

Angiotensins and kinins are endogenous peptides with diverse biological actions; as such, they represent current and future targets of therapeutic intervention. The field of angiotensin biology has changed significantly over the last 50 years. Our original understanding of the crucial role of angiotensin II in the regulation of vascular tone and electrolyte homeostasis has been expanded to include the discovery of new angiotensins, their important role in cardiovascular inflammation and the development of clinically useful synthesis inhibitors and receptor antagonists. While less applied progress has been achieved in the kinin field, there are continuous discoveries in bradykinin physiology and in the complexity of kinin interactions with other proteins. The present review focuses on mechanisms and interactions of angiotensins and kinins that deal specifically with vascular endothelium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abadir PM, Carey RM, Siragy HM (2003) Angiotensin AT2 receptors directly stimulate renal nitric oxide in bradykinin B2-receptor-null mice. Hypertension 42:600–604

    PubMed  CAS  Google Scholar 

  • AbdAlla S, Lother H, Quitterer U (2000) AT1-receptor heterodimers show enhanced Gprotein activation and altered receptor sequestration. Nature 407:94–98

    PubMed  CAS  Google Scholar 

  • AbdAlla S, Lother H, Abdel-tawab AM, Quitterer U (2001a) The angiotensin II AT2 receptor is an AT1 receptor antagonist. J Biol Chem 276:39721–39726

    PubMed  CAS  Google Scholar 

  • AbdAlla S, Lother H, el Massiery A, Quitterer U (2001b) Increased AT(1) receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness. Nat Med 7:1003–1009

    PubMed  CAS  Google Scholar 

  • Alfie ME, Yang XP, Hess F, Carretero OA (1996) Salt-sensitive hypertension in bradykinin B2 receptor knockout mice. Biochem Biophys Res Commun 224:625–630

    PubMed  CAS  Google Scholar 

  • Alhenc-Gelas F, Weare JA, Johnson RL Jr, Erdos EG (1983) Measurement of human converting enzyme level by direct radioimmunoassay. J Lab Clin Med 101:83–96

    PubMed  CAS  Google Scholar 

  • Alhenc-Gelas F, Richard J, Courbon D, Warnet JM, Corvol P (1991) Distribution of plasma angiotensin I-converting enzyme levels in healthy men: relationship to environmental and hormonal parameters. J Lab Clin Med 117:33–39

    PubMed  CAS  Google Scholar 

  • Almeida AP, Frabregas BC, Madureira MM, Santos RJ, Campagnole-Santos MJ, Santos RA (2000) Angiotensin-(1–7) potentiates the coronary vasodilatory effect of bradykinin in the isolated rat heart. Braz J Med Biol Res 33:709–713

    PubMed  CAS  Google Scholar 

  • Alvarez A, Sanz MJ (2001) Reactive oxygen species mediate angiotensin II-induced leukocyte-endothelial cell interactions in vivo. J Leukoc Biol 70:199–206

    PubMed  CAS  Google Scholar 

  • Antonaccio MJ, Cushman DW (1981) Drugs inhibiting the renin—angiotensin system. Fed Proc 40:2275–2284

    PubMed  CAS  Google Scholar 

  • Aparecida Oliveira M, Bruno Fortes Z, Santos RAS, Kosla MC, De Carvalho MHC (1999) Synergistic effect of angiotensin-(1–7) on bradykinin arteriolar dilation in vivo. Peptides 20:1195–1201

    CAS  Google Scholar 

  • Ardaillou R (1999) Angiotensin II receptors. J Am Soc Nephrol 10Suppl 11:S30–S39

    PubMed  CAS  Google Scholar 

  • Arima S (2003) Roleof angiotensin II and endogenous vasodilators in the control of glomerular hemodynamics. Clin Exp Nephrol 7:172–178

    PubMed  CAS  Google Scholar 

  • Arima S, Endo Y, Yaoita H, Omata K, Ogawa S, Tsunoda K, Abe M, Takeuchi K, Abe K, Ito S (1997) Possible role of P-450 metabolite of arachidonic acid in vasodilator mechanism of angiotensin II type 2 receptor in the isolated microperfused rabbit afferent arteriole. J Clin Invest 100:2816–2823

    PubMed  CAS  Google Scholar 

  • Baiardi G, Macova M, Armando I, Ando H, Tyurmin D, Saavedra JM (2005) Estrogen upregulates renal angiotensin II AT1 and AT2 receptors in the rat. Regul Pept 124:7–17

    PubMed  CAS  Google Scholar 

  • Bartus RT, Elliott PJ, Dean RL, Hayward NJ, Nagle TL, Huff MR, Snodgrass PA, Blunt DG (1996) Controlled modulation of BBB permeability using the bradykinin agonist, RMP-7. Exp Neurol 142:14–28

    PubMed  CAS  Google Scholar 

  • Batenburg WW, Garrelds IM, Bernasconi CC, Juillerat-Jeanneret L, van Kats JP, Saxena PR, Danser AH (2004a) Angiotensin II type 2 receptor-mediated vasodilation in human coronary microarteries. Circulation 109:2296–2301

    PubMed  CAS  Google Scholar 

  • Batenburg WW, Garrelds IM, van Kats JP, Saxena PR, Danser AH (2004b) Mediators of bradykinin-induced vasorelaxation in human coronary microarteries. Hypertension 43:488–492

    PubMed  CAS  Google Scholar 

  • Bayraktutan U, Ulker S (2003) Effects of angiotensin II on nitric oxide generation in proliferating and quiescent rat coronary microvascular endothelial cells. Hypertens Res 26:749–757

    PubMed  CAS  Google Scholar 

  • Benndorf R, Boger RH, Ergun S, Steenpass A, Wieland T (2003) Angiotensin II type 2 receptor inhibits vascular endothelial growth factor-induced migration and in vitro tube formation of human endothelial cells. Circ Res 93:438–447

    PubMed  CAS  Google Scholar 

  • Benter IF, Ferrario CM, Morris M, Diz DI (1995) Antihypertensive actions of angiotensin-(1–7) in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 269:H313–319

    CAS  Google Scholar 

  • Benzing T, Fleming I, Blaukat A, Muller-Esterl W, Busse R (1999) Angiotensin-converting enzyme inhibitor ramiprilat interferes with the sequestration of the B2 kinin receptor within the plasma membrane of native endothelial cells. Circulation 99:2034–2040

    PubMed  CAS  Google Scholar 

  • Beraldo WT, Rocha e Silva M (1949) Biological assay of antihistaminics, atropine and antispasmodics upon the guinea pig gut. J Pharmacol Exp Ther 97:388–398

    PubMed  CAS  Google Scholar 

  • Bergaya S, Meneton P, Bloch-Faure M, Mathieu E, Alhenc-Gelas F, Levy BI, Boulanger CM (2001) Decreased flow-dependent dilation in carotid arteries of tissue kallikrein-knockout mice. Circ Res 88:593–599

    PubMed  CAS  Google Scholar 

  • Bergaya S, Hilgers RHP, Meneton P, Dong Y, Bloch-Faure M, Inagami T, Alhenc-Gelas F, Levy BI, Boulanger CM (2004) Flow-dependent dilation mediated by endogenous kinins requires angiotensin AT2 receptors. Circ Res 94:1623–1629

    PubMed  CAS  Google Scholar 

  • Bernier SG, Haldar S, Michel T (2000) Bradykinin-regulated interactions of the mitogen-activated protein kinase pathway with the endothelial nitric-oxide synthase. J Biol Chem 275:30707–30715

    PubMed  CAS  Google Scholar 

  • Bernstein KE (2002) Two ACEs and a heart. Nature 417:799–802

    PubMed  CAS  Google Scholar 

  • Bernstein KE, Martin BM, Edwards AS, Bernstein EA (1989) Mouse angiotensin-converting enzyme is a protein composed of two homologous domains. J Biol Chem 264:11945–11951

    PubMed  CAS  Google Scholar 

  • Berthiaume N, Hess F, Chen A, Regoli D, D’Orleans-Juste P (1997) Pharmacology of kinins in the arterial and venous mesenteric bed of normal and B2 knockout transgenic mice. Eur J Pharmacol 333:55–61

    PubMed  CAS  Google Scholar 

  • Blaukat A, Herzer K, Schroeder C, Bachmann M, Nash N, Muller-Esterl W (1999) Over-expression and functional characterization of kinin receptors reveal subtype-specific phosphorylation. Biochemistry 38:1300–1309

    PubMed  CAS  Google Scholar 

  • Boehm S, Kubista H (2002) Fine tuning of sympathetic transmitter release via ionotropic and metabotropic presynaptic receptors. Pharmacol Rev 54:43–99

    PubMed  CAS  Google Scholar 

  • Brakebusch C, Varfolomeev EE, Batkin M, Wallach D (1994) Structural requirements for inducible shedding of the p55 tumor necrosis factor receptor. J Biol Chem 269:32488–32496

    PubMed  CAS  Google Scholar 

  • Brosnihan KB, Li P, Ferrario CM (1996) Angiotensin-(1–7) dilates canine coronary arteries through kinins and nitric oxide. Hypertension 27:523–528

    PubMed  CAS  Google Scholar 

  • Buczko W, Matys T, Kucharewicz I, Chabielska E (1999) The role of endothelium in antithrombotic effect of the renin—angiotensin system blockade. J Physiol Pharmacol 50:499–507

    PubMed  CAS  Google Scholar 

  • Busse R, Fleming I (1996) Molecular responses of endothelial tissue to kinins. Diabetes 45Suppl 1:S8–13

    PubMed  Google Scholar 

  • Cai H, Li Z, Dikalov S, Holland SM, Hwang J, Jo H, Dudley SC Jr, Harrison DG (2002) NAD(P)H oxidase-derived hydrogen peroxide mediates endothelial nitric oxide production in response to angiotensin II. J Biol Chem 277:48311–48317

    PubMed  CAS  Google Scholar 

  • Cambien F, Alhenc-Gelas F, Herbeth B, Andre JL, Rakotovao R, Gonzales MF, Allegrini J, Bloch C (1988) Familial resemblance of plasma angiotensin-converting enzyme level: the Nancy Study. Am J Hum Genet 43:774–780

    PubMed  CAS  Google Scholar 

  • Campbell DJ, Alexiou T, Xiao HD, Fuchs S, McKinley MJ, Corvol P, Bernstein KE (2004) Effect of reduced angiotensin-converting enzyme gene expression and angiotensin-converting enzyme inhibition on angiotensin and bradykinin peptide levels in mice. Hypertension 43:854–859

    PubMed  CAS  Google Scholar 

  • Carey RM, Howell NL, Jin XH, Siragy HM (2001) Angiotensin type 2 receptor-mediated hypotension in angiotensin type-1 receptor-Blocked rats. Hypertension 38:1272–1277

    PubMed  CAS  Google Scholar 

  • Carvalho CR, Thirone AC, Gontijo JA, Velloso LA, Saad MJ (1997) Effect of captopril, losartan, and bradykinin on early steps of insulin action. Diabetes 46:1950–1957

    PubMed  CAS  Google Scholar 

  • Catravas JD, Gillis CN (1981) Metabolism of [3H]benzoyl-phenylalanyl-alanyl-proline by pulmonary angiotensin converting enzyme in vivo: effects of bradykinin, SQ 14225 or acute hypoxia. J Pharmacol Exp Ther 217:263–270

    PubMed  CAS  Google Scholar 

  • Chan DC, Gera L, Stewart JM, Helfrich B, Zhao TL, Feng WY, Chan KK, Covey JM, Bunn PA Jr (2002) Bradykinin antagonist dimer, CU201, inhibits the growth of human lung cancer cell lines in vitro and in vivo and produces synergistic growth inhibition in combination with other antitumor agents. Clin Cancer Res 8:1280–1287

    PubMed  CAS  Google Scholar 

  • Chavakis T, Kanse SM, Pixley RA, May AE, Isordia-Salas I, Colman RW, Preissner KT (2001) Regulation of leukocyte recruitment by polypeptides derived from high molecular weight kininogen. FASEB J 15:2365–2376

    PubMed  CAS  Google Scholar 

  • Chen BC, Yu CC, Lei HC, Chang MS, Hsu MJ, Huang CL, Chen MC, Sheu JR, Chen TF, Chen TL, Inoue H, Lin CH (2004) Bradykinin B2 receptor mediates NF-kappaB activation and cyclooxygenase-2 expression via the Ras/Raf-1/ERK pathway in human airway epithelial cells. J Immunol 173:5219–5228

    PubMed  CAS  Google Scholar 

  • Chen S, Patel JM, Block ER (2000) Angiotensin IV-mediated pulmonary artery vasorelaxation is due to endothelial intracellular calcium release. Am J Physiol Lung Cell Mol Physiol 279:L849–856

    PubMed  CAS  Google Scholar 

  • Chua BH, Chua CC, Diglio CA, Siu BB (1993) Regulation of endothelin-1 mRNA by angiotensin II in rat heart endothelial cells. Biochim Biophys Acta 1178:201–206

    PubMed  CAS  Google Scholar 

  • Chua CC, Diglio CA, Siu BB, Chua BH (1994) Angiotensin II induces TGF-beta 1 production in rat heart endothelial cells. Biochim Biophys Acta 1223:141–147

    PubMed  CAS  Google Scholar 

  • Chua CC, Hamdy RC, Chua BH (1996) Angiotensin II induces TIMP-1 production in rat heart endothelial cells. Biochim Biophys Acta 1311:175–180

    PubMed  Google Scholar 

  • Chua CC, Hamdy RC, Chua BH (1997) Regulation of thrombospondin-1 production by angiotensin II in rat heart endothelial cells. Biochim Biophys Acta 1357:209–214

    PubMed  CAS  Google Scholar 

  • Chua CC, Hamdy RC, Chua BH (1998) Upregulation of vascular endothelial growth factor by H2O2 in rat heart endothelial cells. Free Radic Biol Med 25:891–897

    PubMed  CAS  Google Scholar 

  • Cole J, Quach du L, Sundaram K, Corvol P, Capecchi MR, Bernstein KE (2002) Mice lacking endothelial angiotensin-converting enzyme have a normal blood pressure. Circ Res 90:87–92

    PubMed  CAS  Google Scholar 

  • Corvol P, Williams TA, Soubrier F (1995) Peptidyl dipeptidase A: angiotensin I-converting enzyme. Methods Enzymol 248:283–305

    PubMed  CAS  Google Scholar 

  • Costanzo A, Moretti F, Burgio VL, Bravi C, Guido F, Levrero M, Puri PL (2003) Endothelial activation by angiotensin II through NFkappaB and p38 pathways: involvement of NFkappaB-inducible kinase (NIK), free oxygen radicals, and selective inhibition by aspirin. J Cell Physiol 195:402–410

    PubMed  CAS  Google Scholar 

  • Costerousse O, Jaspard E, Wei L, Corvol P, Alhenc-Gelas F (1992) The angiotensin Iconverting enzyme(kininase II):molecular organization and regulation of its expression in humans. J Cardiovasc Pharmacol 20Suppl 9:S10–15

    PubMed  CAS  Google Scholar 

  • Crackower MA, Sarao R, Oudit GY, Yagil C, Kozieradzki I, Scanga SE, Oliveira-dos-Santos AJ, da Costa J, Zhang L, Pei Y, Scholey J, Ferrario CM, Manoukian AS, Chappell MC, Backx PH, Yagil Y, Penninger JM (2002) Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 417:822–828

    PubMed  CAS  Google Scholar 

  • Cushman DW, Cheung HS, Sabo EF, Ondetti MA (1978) Design of new antihypertensive drugs: potent and specific inhibitors of angiotensin-converting enzyme. Prog Cardiovasc Dis 21:176–182

    PubMed  CAS  Google Scholar 

  • Cushman DW, Ondetti MA, Cheung HS, Antonaccio MJ, Murthy VS, Rubin B (1980) Inhibitors of angiotensin-converting enzyme. Adv Exp Med Biol 130:199–225

    PubMed  CAS  Google Scholar 

  • Dalmay F, Mazouz H, Allard J, Pesteil F, Achard JM, Fournier A (2001) Non-AT(1)-receptor-mediated protective effect of angiotensin against acute ischaemic stroke in the gerbil. J Renin Angiotensin Aldosterone Syst 2:103–106

    PubMed  CAS  Google Scholar 

  • Danilczyk U, Eriksson U, Crackower MA, Penninger JM (2003) A story of two ACEs. J Mol Med 81:227–234

    PubMed  CAS  Google Scholar 

  • Davis JO, Freeman RH (1982) Historical perspectives on the renin-angiotensin-aldosterone system and angiotensin blockade. Am J Cardiol 49:1385–1389

    PubMed  CAS  Google Scholar 

  • De Paolis P, Porcellini A, Gigante B, Giliberti R, Lombardi A, Savoia C, Rubattu S, Volpe M (1999) Modulation of the AT2 subtype receptor gene activation and expression by the AT1 receptor in endothelial cells. J Hypertens 17:1873–1877

    PubMed  Google Scholar 

  • Decarie A, Raymond P, Gervais N, Couture R, Adam A (1996) Seruminterspecies differences in metabolic pathways of bradykinin and [des-Arg9]BK: influence of enalaprilat. Am J Physiol 271:H1340–1347

    PubMed  CAS  Google Scholar 

  • Deddish PA, Marcic BM, Tan F, Jackman HL, Chen Z, Erdos EG (2002) Neprilysin inhibitors potentiate effects of bradykinin on B2 receptor. Hypertension 39:619–623

    PubMed  CAS  Google Scholar 

  • Dell’Italia LJ, Husain A (2002) Dissecting the role of chymase in angiotensin II formation and heart and blood vessel diseases. Curr Opin Cardiol 17:374–379

    PubMed  Google Scholar 

  • Delles C, Michelson G, Harazny J, Oehmer S, Hilgers KF, Schmieder RE (2004) Impaired endothelial function of the retinal vasculature in hypertensive patients. Stroke 35:1289–1293

    PubMed  CAS  Google Scholar 

  • Dendorfer A, Wolfrum S, Dominiak P (1999) Pharmacology and cardiovascular implications of the kinin-kallikrein system. Jpn J Pharmacol 79:403–426

    PubMed  CAS  Google Scholar 

  • Derian CK, Moskowitz MA (1986) Polyphosphoinositide hydrolysis in endothelial cells and carotid artery segments. Bradykinin-2 receptor stimulation is calcium-independent. J Biol Chem 261:3831–3837

    PubMed  CAS  Google Scholar 

  • Desideri G, Bravi MC, Tucci M, Croce G, Marinucci MC, Santucci A, Alesse E, Ferri C (2003) Angiotensin II inhibits endothelial cell motility through an AT1-dependent oxidantsensitive decrement of nitric oxide availability. Arterioscler Thromb Vasc Biol 23:1218–1223

    PubMed  CAS  Google Scholar 

  • Diep QN, El Mabrouk M, Cohn JS, Endemann D, Amiri F, Virdis A, Neves MF, Schiffrin EL (2002) Structure, endothelial function, cell growth, and inflammation in blood vessels of angiotensin II-infused rats: role of peroxisome proliferator-activated receptor-gamma. Circulation 105:2296–2302

    PubMed  CAS  Google Scholar 

  • Dietze G, Wicklmayr M, Bottger I, Schifmann R, Geiger R, Fritz H, Mehnert H (1980) The kallikrein-kinin system and muscle metabolism: biochemical aspects. Agents Actions 10:335–338

    PubMed  CAS  Google Scholar 

  • Dimmeler S, Zeiher AM (2000) Reactive oxygen species and vascular cell apoptosis in response to angiotensin II and pro-atherosclerotic factors. Regul Pept 90:19–25

    PubMed  CAS  Google Scholar 

  • Dimmeler S, Rippmann V, Weiland U, Haendeler J, Zeiher AM (1997) Angiotensin II induces apoptosis of human endothelial cells. Protective effect of nitric oxide. Circ Res 81:970–976

    PubMed  CAS  Google Scholar 

  • Dobuler KJ, Catravas JD, Gillis CN (1982) Early detection of oxygen-induced lung injury in conscious rabbits. Reduced in vivo activity of angiotensin converting enzyme and removal of 5-hydroxytryptamine. Am Rev Respir Dis 126:534–539

    PubMed  CAS  Google Scholar 

  • Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan R, Breitbart RE, Acton S (2000) A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res 87:E1–9

    PubMed  CAS  Google Scholar 

  • Dzau VJ (2001) Theodore Cooper Lecture: tissue angiotensin and pathobiology of vascular disease: a unifying hypothesis. Hypertension 37:1047–1052

    PubMed  CAS  Google Scholar 

  • Dzau VJ, Bernstein K, Celermajer D, Cohen J, Dahlof B, Deanfield J, Diez J, Drexler H, Ferrari R, Van Gilst W, Hansson L, Hornig B, Husain A, Johnston C, Lazar H, Lonn E, Luscher T, Mancini J, Mimran A, Pepine C, Rabelink T, Remme W, Ruilope L, Ruzicka M, Schunkert H, Swedberg K, Unger T, Vaughan D, Weber M (2002) Pathophysiologic and therapeutic importance of tissue ACE: a consensus report. Cardiovasc Drugs Ther 16:149–160

    PubMed  CAS  Google Scholar 

  • Ehlers MR, Fox EA, Strydom DJ, Riordan JF (1989) Molecular cloning of human testicular angiotensin-converting enzyme: the testis isozyme is identical to the C-terminal half of endothelial angiotensin-converting enzyme. Proc Natl Acad Sci U S A 86:7741–7745

    PubMed  CAS  Google Scholar 

  • Eiskjaer H, Sorensen SS, Danielsen H, Pedersen EB (1992) Glomerular and tubular antinatriuretic actions of low-dose angiotensin II infusion in man. J Hypertens 10:1033–1040

    PubMed  CAS  Google Scholar 

  • El-Dahr SS, Harrison-Bernard LM, Dipp S, Yosipiv IV, Meleg-Smith S (2000) Bradykinin B2 null mice are prone to renal dysplasia: gene-environment interactions in kidney development. Physiol Genomics 3:121–131

    PubMed  CAS  Google Scholar 

  • Emanueli C, Maestri R, Corradi D, Marchione R, Minasi A, Tozzi MG, Salis MB, Straino S, Capogrossi MC, Olivetti G, Madeddu P (1999) Dilated and failing cardiomyopathy in bradykinin B(2) receptor knockout mice. Circulation 100:2359–2365

    PubMed  CAS  Google Scholar 

  • Erdos EG (1990a) Some old and some new ideas on kinin metabolism. J Cardiovasc Pharmacol 15Suppl 6:S20–24

    PubMed  CAS  Google Scholar 

  • Erdos EG (1990b) Angiotensin I converting enzymeand the changes in our concepts through the years. Lewis K. Dahl memorial lecture. Hypertension 16:363–370

    PubMed  CAS  Google Scholar 

  • Erdos EG, Yang HY (1967) An enzyme in microsomal fraction of kidney that inactivates bradykinin. Life Sci 6:569–574

    PubMed  CAS  Google Scholar 

  • Erdos EG, Deddish PA, Marcic BM (1999) Potentiation of bradykinin actions by ACE inhibitors. Trends Endocrinol Metab 10:223–229

    PubMed  CAS  Google Scholar 

  • Esther CR, Marino EM, Howard TE, Machaud A, Corvol P, Capecchi MR, Bernstein KE (1997) The critical role of tissue angiotensin-converting enzyme as revealed by gene targeting in mice. J Clin Invest 99:2375–2385

    PubMed  CAS  Google Scholar 

  • Esther CR Jr, Howard TE, Marino EM, Goddard JM, Capecchi MR, Bernstein KE (1996) Mice lacking angiotensin-converting enzyme have low blood pressure, renal pathology, and reduced male fertility. Lab Invest 74:953–965

    PubMed  CAS  Google Scholar 

  • Fein AM, Bernard GR, Criner GJ, Fletcher EC, Good JT Jr, Knaus WA, Levy H, Matuschak GM, Shanies HM, Taylor RW, Rodell TC (1997) Treatment of severe systemic inflammatory response syndrome and sepsis with a novel bradykinin antagonist, deltibant (CP-0127). Results of a randomized, double-blind, placebo-controlled trial. CP-0127 SIRS and Sepsis Study Group. JAMA 277:482–487

    PubMed  CAS  Google Scholar 

  • Fernandes L, Fortes ZB, Nigro D, Tostes RCA, Santos RAS, Catelli de Carvalho MH (2001) Potentiation of bradykinin by angiotensin-(1–7) on arterioles of spontaneously hypertensive rats studied in vivo. Hypertension 37:703–709

    PubMed  CAS  Google Scholar 

  • Ferrario CM, Flack JM (1996) Pathologic consequences of increased angiotensin II activity. Cardiovasc Drugs Ther 10:511–518

    PubMed  CAS  Google Scholar 

  • Ferrario CM, Brosnihan KB, Diz DI, Jaiswal N, Khosla MC, Milsted A, Tallant EA (1991) Angiotensin-(1–7): a new hormone of the angiotensin system. Hypertension 18:III126–133

    PubMed  CAS  Google Scholar 

  • Ferrario CM, Chappell MC, Tallant EA, Brosnihan KB, Diz DI (1997) Counterregulatory actions of angiotensin-(1–7). Hypertension 30:535–541

    PubMed  CAS  Google Scholar 

  • Ferreira SH, Bartelt DC, Greene LJ (1970) Isolation of bradykinin-potentiating peptides from Bothrops jararaca venom. Biochemistry 9:2583–2593

    PubMed  CAS  Google Scholar 

  • Ferri C, Desideri G, Baldoncini R, Bellini C, Valenti M, Santucci A, De Mattia G (1999) Angiotensin II increases the release of endothelin-1 from human cultured endothelial cells but does not regulate its circulating levels. Clin Sci (Lond) 96:261–270

    PubMed  CAS  Google Scholar 

  • Frossard N, Stretton CD, Barnes PJ (1990) Modulation of bradykinin responses in airway smooth muscle by epithelial enzymes. Agents Actions 31:204–209

    PubMed  CAS  Google Scholar 

  • Gans RO, Bilo HJ, Nauta JJ, Popp-Snijders C, Heine RJ, Donker AJ (1991) The effect of angiotensin-I converting enzyme inhibition on insulin action in healthy volunteers. Eur J Clin Invest 21:527–533

    PubMed  CAS  Google Scholar 

  • Gohlke P, Pees C, Unger T (1998) AT2 receptor stimulation increases aortic cyclic GMP in SHRSP by a kinin-dependent mechanism. Hypertension 31:349–355

    PubMed  CAS  Google Scholar 

  • Grafe M, Auch-Schwelk W, Zakrzewicz A, Regitz-Zagrosek V, Bartsch P, Graf K, Loebe M, Gaehtgens P, Fleck E (1997) Angiotensin II-induced leukocyte adhesion on human coronary endothelial cells is mediated by E-selectin. Circ Res 81:804–811

    PubMed  CAS  Google Scholar 

  • Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74:1141–1148

    PubMed  CAS  Google Scholar 

  • Griendling KK, Ushio-Fukai M, Lassegue B, Alexander RW (1997) Angiotensin II signaling in vascular smooth muscle. New concepts. Hypertension 29:366–373

    PubMed  CAS  Google Scholar 

  • Griesbacher T, Legat FJ (2000) Effects of the non-peptide B2 receptor antagonist FR173657 in models of visceral and cutaneous inflammation. Inflamm Res 49:535–540

    PubMed  CAS  Google Scholar 

  • Guimaraes S, Paiva MQ, Moura D (1998) Different receptors for angiotensin II at pre-and postjunctional level of the canine mesenteric and pulmonary arteries. Br J Pharmacol 124:1207–1212

    PubMed  CAS  Google Scholar 

  • Hall KL, Venkateswaran S, Hanesworth JM, Schelling ME, Harding JW (1995) Characterization of a functional angiotensin IV receptor on coronary microvascular endothelial cells. Regul Pept 58:107–115

    PubMed  CAS  Google Scholar 

  • Harada K, Komuro I, Sugaya T, Murakami K, Yazaki Y (1999) Vascular injury causes neointimal formation in angiotensin II type 1a receptor knockout mice. Circ Res 84:179–185

    PubMed  CAS  Google Scholar 

  • Harding JW, Cook VI, Miller-Wing AV, Hanesworth JM, Sardinia MF, Hall KL, Stobb JW, Swanson GN, Coleman JK, Wright JW, et al (1992) Identification of an AII(3–8) [AIV] binding site in guinea pig hippocampus. Brain Res 583:340–343

    PubMed  CAS  Google Scholar 

  • Heitsch H, Brovkovych S, Malinski T, Wiemer G (2001) Angiotensin-(1–7)-stimulated nitric oxide and superoxide release from endothelial cells. Hypertension 37:72–76

    PubMed  CAS  Google Scholar 

  • Henrion D, Kubis N, Levy BI (2001) Physiological and pathophysiological functions of the AT2 subtype receptor of angiotensin II: from large arteries to the microcirculation. Hypertension 38:1150–1157

    PubMed  CAS  Google Scholar 

  • Hilgenfeldt U, Kienapfel G, Kellermann W, Schott R, Schmidt M (1987) Renin-angiotensin system in sepsis. Clin Exp Hypertens A 9:1493–1504

    PubMed  CAS  Google Scholar 

  • Hill-Kapturczak N, Kapturczak MH, Block ER, Patel JM, Malinski T, Madsen KM, Tisher CC (1999) Angiotensin II-stimulated nitric oxide release from porcine pulmonary endothelium is mediated by angiotensin IV. J Am Soc Nephrol 10:481–491

    PubMed  CAS  Google Scholar 

  • Hornig B, Kohler C, Schlink D, Tatge H, Drexler H (2003) AT1-receptor antagonism improves endothelial function in coronary artery disease by a bradykinin/B2-receptor-dependent mechanism. Hypertension 41:1092–1095

    PubMed  CAS  Google Scholar 

  • Hu DE, Fan TP (1993) [Leu8]des-Arg9-bradykinin inhibits the angiogenic effect of bradykinin and interleukin-1 in rats. Br J Pharmacol 109:14–17

    PubMed  CAS  Google Scholar 

  • Hubert C, Houot AM, Corvol P, Soubrier F (1991) Structure of the angiotensin I-converting enzyme gene. Two alternate promoters correspond to evolutionary steps of a duplicated gene. J Biol Chem 266:15377–15383

    PubMed  CAS  Google Scholar 

  • Imai T, Hirata Y, Emori T, Yanagisawa M, Masaki T, Marumo F (1992) Induction of endothelin-1 gene by angiotensin and vasopressin in endothelial cells. Hypertension 19:753–757

    PubMed  CAS  Google Scholar 

  • Imanishi T, Hano T, Nishio I (2004) Angiotensin II potentiates vascular endothelial growth factor-induced proliferation and network formation of endothelial progenitor cells. Hypertens Res 27:101–108

    PubMed  CAS  Google Scholar 

  • Isami S, Kishikawa H, Araki E, Uehara M, Kaneko K, Shirotani T, Todaka M, Ura S, Motoyoshi S, Matsumoto K, Miyamura N, Shichiri M (1996) Bradykinin enhances GLUT4 translocation through the increase of insulin receptor tyrosine kinase in primary adipocytes: evidence that bradykinin stimulates the insulin signalling pathway. Diabetologia 39:412–420

    PubMed  CAS  Google Scholar 

  • Ito H, Takemori K, Suzuki T (2001) Role of angiotensin II type 1 receptor in the leucocytes and endothelial cells of brain microvessels in the pathogenesis of hypertensive cerebral injury. J Hypertens 19:591–597

    PubMed  CAS  Google Scholar 

  • Iwai M, Liu HW, Chen R, Ide A, Okamoto S, Hata R, Sakanaka M, Shiuchi T, Horiuchi M (2004) Possible inhibition of focal cerebral ischemia by angiotensin II type 2 receptor stimulation. Circulation 110:843–848

    PubMed  CAS  Google Scholar 

  • Iyer SN, Averill DB, Chappell MC, Yamada K, Allred AJ, Ferrario CM (2000) Contribution of angiotensin-(1–7) to blood pressure regulation in salt-depleted hypertensive rats. Hypertension 36:417–422

    PubMed  CAS  Google Scholar 

  • Jaiswal N, Diz DI, Chappell MC, Khosla MC, Ferrario CM (1992) Stimulation of endothelial cell prostaglandin production by angiotensin peptides. Characterization of receptors. Hypertension 19:II49–55

    PubMed  CAS  Google Scholar 

  • Jalowy A, Schulz R, Dorge H, Behrends M, Heusch G (1998) Infarct size reduction by AT1-receptor blockade through a signal cascade of AT2-receptor activation, bradykinin and prostaglandins in pigs. J Am Coll Cardiol 32:1787–1796

    PubMed  CAS  Google Scholar 

  • Jose PJ, Page DA, Wolstenholme BE, Williams TJ, Dumonde DC (1981) Bradykinin-stimulated prostaglandin E2 production by endothelial cells and its modulation by antiin-flammatory compounds. Inflammation 5:363–378

    PubMed  CAS  Google Scholar 

  • Ju H, Venema VJ, Marrero MB, Venema RC (1998) Inhibitory interactions of the bradykinin B2 receptor with endothelial nitric-oxide synthase. J Biol Chem 273:24025–24029

    PubMed  CAS  Google Scholar 

  • Kansui Y, Fujii K, Goto K, Abe I, Iida M (2002) Angiotensin II receptor antagonist improves age-related endothelial dysfunction. J Hypertens 20:439–446

    PubMed  CAS  Google Scholar 

  • Kaplan AP, Joseph K, Shibayama Y, Nakazawa Y, Ghebrehiwet B, Reddigari S, Silverberg M (1998) Bradykinin formation. Plasma and tissue pathways and cellular interactions. Clin Rev Allergy Immunol 16:403–429

    PubMed  CAS  Google Scholar 

  • Katada J, Majima M (2002) AT2 receptor-dependent vasodilation is mediated by activation of vascular kinin generation under flow conditions. Br J Pharmacol 136:484–491

    PubMed  CAS  Google Scholar 

  • Kerins DM, Hao Q, Vaughan DE (1995) Angiotensin induction of PAI-1 expression in endothelial cells is mediated by the hexapeptide angiotensin IV. J Clin Invest 96:2515–2520

    PubMed  CAS  Google Scholar 

  • Kintsurashvili E, Duka I, Gavras I, Johns C, Farmakiotis D, Gavras H (2001) Effects of ANGII on bradykinin receptor gene expression in cardiomyocytes and vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 281:H1778–1783

    PubMed  CAS  Google Scholar 

  • Kiron M, Soffer R (1989) Purification and properties of a soluble angiotensin II-binding protein from rabbit liver. J Biol Chem 264:4138–4142

    PubMed  CAS  Google Scholar 

  • Kishi K, Muromoto N, Nakaya Y, Miyata I, Hagi A, Hayashi H, Ebina Y (1998) Bradykinin directly triggers GLUT4 translocation via an insulin-independent pathway. Diabetes 47:550–558

    PubMed  CAS  Google Scholar 

  • Kohlman O Jr, Neves Fde A, Ginoza M, Tavares A, Cezaretti ML, Zanella MT, Ribeiro AB, Gavras I, Gavras H (1995) Role of bradykinin in insulin sensitivity and blood pressure regulation during hyperinsulinemia. Hypertension 25:1003–1007

    PubMed  CAS  Google Scholar 

  • Kramer C, Sunkomat J, Witte J, Luchtefeld M, Walden M, Schmidt B, Tsikas D, Boger RH, Forssmann WG, Drexler H, Schieffer B (2002) Angiotensin II receptor-independent antiinflammatory and antiaggregatory properties of losartan: role of the active metabolite EXP3179. Circ Res 90:770–776

    PubMed  Google Scholar 

  • Krege JH, John SW, Langenbach LL, Hodgin JB, Hagaman JR, Bachman ES, Jennette JC, O’Brien DA, Smithies O (1995) Male-female differences in fertility and blood pressure in ACE-deficient mice. Nature 375:146–148

    PubMed  CAS  Google Scholar 

  • Kuno A, Miura T, Tsuchida A, Hasegawa T, Miki T, Nishino Y, Shimamoto K (2002) Blockade of angiotensin II type 1 receptors suppressed free radical production and preserved coronary endothelial function in the rabbit heart after myocardial infarction. J Cardiovasc Pharmacol 39:49–57

    PubMed  CAS  Google Scholar 

  • Kurisu S, Ozono R, Oshima T, Kambe M, Ishida T, Sugino H, Matsuura H, Chayama K, Teranishi Y, Iba O, Amano K, Matsubara H (2003) Cardiac angiotensin II type 2 receptor Activates the kinin/NO system and inhibits fibrosis. Hypertension 41:99–107

    PubMed  CAS  Google Scholar 

  • Lassegue B, Sorescu D, Szocs K, Yin Q, Akers M, Zhang Y, Grant SL, Lambeth JD, Griendling KK (2001) Novel gp91phox homologues in vascular smooth muscle cells: nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ Res 88:888–894

    PubMed  CAS  Google Scholar 

  • Lehtonen JYA, Horiuchi M, Daviet L, Akishita M, Dzau VJ (1999) Activation of the de novo biosynthesis of sphingolipids mediates angiotensin II type 2 receptor-induced apoptosis. J Biol Chem 274:16901–16906

    PubMed  CAS  Google Scholar 

  • Lemos VS, Cortes SF, Silva DM, Campagnole-Santos MJ, Santos RA (2002) Angiotensin-(1–7) is involved in the endothelium-dependent modulation of phenylephrine-induced contraction in the aorta of mRen-2 transgenic rats. Br J Pharmacol 135:1743–1748

    PubMed  CAS  Google Scholar 

  • Li D, Tomson K, Yang B, Mehta P, Croker BP, Mehta JL (1999a) Modulation of constitutive nitric oxide synthase, bcl-2 and Fas expression in cultured human coronary endothelial cells exposed to anoxia-reoxygenation and angiotensin II: role of AT1 receptor activation. Cardiovasc Res 41:109–115

    PubMed  CAS  Google Scholar 

  • Li D, Yang B, Philips MI, Mehta JL (1999b) Proapoptotic effects of ANG II in human coronary artery endothelial cells: role of AT1 receptor and PKC activation. Am J Physiol 276:H786–792

    PubMed  CAS  Google Scholar 

  • Li DY, Zhang YC, Philips MI, Sawamura T, Mehta JL (1999c) Upregulation of endothelial receptor for oxidized low-density lipoprotein (LOX-1) in cultured human coronary artery endothelial cells by angiotensin II type 1 receptor activation. Circ Res 84:1043–1049

    PubMed  CAS  Google Scholar 

  • Li JS, Sharifi AM, Schiffrin EL (1997b) Effect of AT1 angiotensin-receptor blockade on structure and function of small arteries in SHR. J Cardiovasc Pharmacol 30:75–83

    PubMed  CAS  Google Scholar 

  • Li P, Chappell MC, Ferrario CM, Brosnihan KB (1997c) Angiotensin-(1–7) augments bradykinin-induced vasodilation by competing with ACE and releasing nitric oxide. Hypertension 29:394–398

    PubMed  CAS  Google Scholar 

  • Li P, Fukuhara M, Diz DI, Ferrario CM, Brosnihan KB (2000) Novel angiotensin II AT(1) receptor antagonist irbesartan prevents thromboxane A(2)-induced vasoconstriction in canine coronary arteries and human platelet aggregation. J Pharmacol Exp Ther 292:238–246

    PubMed  CAS  Google Scholar 

  • Li Q, Feenstra M, Pfaffendorf M, Eijsman L, van Zwieten PA (1997a) Comparative vasoconstrictor effects of angiotensin II, III, and IV in human isolated saphenous vein. J Cardiovasc Pharmacol 29:451–456

    PubMed  CAS  Google Scholar 

  • Lima CV, Paula RD, Resende FL, Khosla MC, Santos RAS (1997) Potentiation of the hypotensive effect of bradykinin by short-term infusion of angiotensin-(1-7) in normotensive and hypertensive rats. Hypertension 30:542–548

    PubMed  CAS  Google Scholar 

  • Liu X, Fernandez M, Wouters MA, Heyberger S, Husain A (2001) Arg(1098) is critical for the chloride dependence of human angiotensin I-converting enzyme C-domain catalytic activity. J Biol Chem 276:33518–33525

    PubMed  CAS  Google Scholar 

  • Liu YH, Yang XP, Sharov VG, Nass O, Sabbah HN, Peterson E, Carretero OA (1997) Effects of angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor antagonists in rats with heart failure. Role of kinins and angiotensin II type 2 receptors. J Clin Invest 99:1926–1935

    PubMed  CAS  Google Scholar 

  • Liu YH, Xu J, Yang XP, Yang F, Shesely E, Carretero OA (2002) Effect of ACE inhibitors and angiotensin II type 1 receptor antagonists on endothelial NO synthase knockout mice with heart failure. Hypertension 39:375–381

    PubMed  CAS  Google Scholar 

  • Luft FC, Wilcox CS, Unger T, Kuhn R, Demmert G, Rohmeiss P, Ganten D, Sterzel RB (1989) Angiotensin-induced hypertension in the rat. Sympathetic nerve activity and prostaglandins. Hypertension 14:396–403

    PubMed  CAS  Google Scholar 

  • Luscher TF, Boulanger CM, Dohi Y, Yang ZH (1992) Endothelium-derived contracting factors. Hypertension 19:117–130

    PubMed  CAS  Google Scholar 

  • Madeddu P, Emanueli C, Maestri R, Salis MB, Minasi A, Capogrossi MC, Olivetti G (2000) Angiotensin II type 1 receptor blockade prevents cardiac remodeling in bradykinin B(2) receptor knockout mice. Hypertension 35:391–396

    PubMed  CAS  Google Scholar 

  • Maeso R, Rodrigo E, Munoz-Garcia R, Navarro-Cid J, Ruilope LM, Cachofeiro V, Lahera V (1998) Factors involved in the effects of losartan on endothelial dysfunction induced by aging in SHR. Kidney Int Suppl 68:S30–35

    PubMed  CAS  Google Scholar 

  • Maia LG, Ramos MC, Fernandes L, de Carvalho MH, Campagnole-Santos MJ, Souza dos Santos RA (2004) Angiotensin-(1–7) antagonist A-779 attenuates the potentiation of bradykinin by captopril in rats. J Cardiovasc Pharmacol 43:685–691

    PubMed  CAS  Google Scholar 

  • Makino I, Shibata K, Ohgami Y, Fujiwara M, Furukawa T (1996) Transient upregulation of the AT2 receptor mRNA level after global ischemia in the rat brain. Neuropeptides 30:596–601

    PubMed  CAS  Google Scholar 

  • Maly J, Karasova L, Simova M, Vitko S, El-Dahr SS (2001) Angiotensin II-induced hypertension in bradykinin B2 receptor knockout mice. Hypertension 37:967–973

    PubMed  Google Scholar 

  • Marceau F, Barabe J, St-Pierre S, Regoli D (1980) Kinin receptors in experimental inflammation. Can J Physiol Pharmacol 58:536–542

    PubMed  CAS  Google Scholar 

  • Marceau F, Hess JF, Bachvarov DR (1998) The B1 receptors for kinins. Pharmacol Rev 50:357–386

    PubMed  CAS  Google Scholar 

  • Marcic B, Deddish PA, Jackman HL, Erdos EG (1999) Enhancement of bradykinin and resensitization of its B2 receptor. Hypertension 33:835–843

    PubMed  Google Scholar 

  • Margolius HS (1998) Tissue kallikreins structure, regulation, and participation in mammalian physiology and disease. Clin Rev Allergy Immunol 16:337–349

    PubMed  CAS  Google Scholar 

  • McCloud LL, Parkerson JB, Freant L, Hoffman WH, Catravas JD (2004a) β-Hydroxybutyrate induces acute pulmonary endothelial dysfunction in rabbits. Exp Lung Res 30:193–206

    PubMed  CAS  Google Scholar 

  • McCloud LL, Parkerson JB, Zou L, Rao RN, Catravas JD (2004b) Reduced pulmonary endothelium-bound angiotensin converting enzyme activity in diabetic rabbits. Vascul Pharmacol 41:159–165

    PubMed  CAS  Google Scholar 

  • McCormick JR, Chrzanowski R, Andreani J, Catravas JD (1987) Early pulmonary endothelial enzyme dysfunction after phorbol ester in conscious rabbits. JAppl Physiol 63:1972–1978

    CAS  Google Scholar 

  • Mehta JL, Li DY, Yang H, Raizada MK (2002) Angiotensin II and IV stimulate expression and release of plasminogen activator inhibitor-1 in cultured human coronary artery endothelial cells. J Cardiovasc Pharmacol 39:789–794

    PubMed  CAS  Google Scholar 

  • Meng W, Busija D (1993) Comparative effects of angiotensin-(1–7) and angiotensin II on piglet pial arterioles. Stroke 24:2041–2044

    PubMed  CAS  Google Scholar 

  • Mervaala EMA, Cheng ZJ, Tikkanen I, Lapatto R, Nurminen K, Vapaatalo H, Muller DN, Fiebeler A, Ganten U, Ganten D, Luft FC (2001) Endothelial dysfunction and xanthine oxidoreductase activity in rats with human renin and angiotensinogen genes. Hypertension 37:414–418

    PubMed  CAS  Google Scholar 

  • Mikrut K, Paluszak J, Kozlik J, Sosnowski P, Krauss H, Grzeskowiak E (2001) The effect of bradykinin on the oxidative state of rats with acute hyperglycaemia. Diabetes Res Clin Pract 51:79–85

    PubMed  CAS  Google Scholar 

  • Minshall RD, Tan F, Nakamura F, Rabito SF, Becker RP, Marcic B, Erdos EG (1997) Potentiation of the actions of bradykinin by angiotensin I-converting enzyme inhibitors: the role of expressed human bradykinin B2 receptors and angiotensin I-converting enzyme in CHO cells. Circ Res 81:848–856

    PubMed  CAS  Google Scholar 

  • Mitchell KD, Navar LG (1989) The renin-angiotensin-aldosterone systemin volume control. Baillieres Clin Endocrinol Metab 3:393–430

    PubMed  CAS  Google Scholar 

  • Miura S, Matsuo Y, Saku K (2003) Transactivation of KDR/Flk-1 by the B2 receptor induces tube formation in human coronary endothelial cells. Hypertension 41:1118–1123

    PubMed  CAS  Google Scholar 

  • Moeller I, Clune EF, Fennessy PA, Bingley JA, Albiston AL, Mendelsohn FA, Chai SY (1999) Up regulation of AT4 receptor levels in carotid arteries following balloon injury. Regul Pept 83:25–30

    PubMed  CAS  Google Scholar 

  • Morbidelli L, Parenti A, Giovannelli L, Granger HJ, Ledda F, Ziche M (1998) B1 receptor involvement in the effect of bradykinin on venular endothelial cell proliferation and potentiation of FGF-2 effects. Br J Pharmacol 124:1286–1292

    PubMed  CAS  Google Scholar 

  • Mukae S, Aoki S, Itoh S, Iwata T, Ueda H, Katagiri T (2000) Bradykinin B(2) receptor gene polymorphism is associated with angiotensin-converting enzyme inhibitor-related cough. Hypertension 36:127–131

    PubMed  CAS  Google Scholar 

  • Muller-Esterl W, Rauth G, Lottspeich F, Kellermann J, Henschen A (1985) Limited proteolysis of human low-molecular-mass kininogen by tissue kallikrein. Isolation and characterization of the heavy and the light chains. Eur J Biochem 149:15–22

    PubMed  CAS  Google Scholar 

  • Muscella A, Marsigliante S, Vilella S, Jimenez E, Storelli C (1999) Angiotensin II stimulates the Na+/H+ exchanger in human umbilical vein endothelial cells via AT1 receptor. Life Sci 65:2385–2394

    PubMed  CAS  Google Scholar 

  • Nakamoto H, Ferrario CM, Fuller SB, Robaczewski DL, Winicov E, Dean RH (1995) Angiotensin-(1–7) and nitric oxide interaction in renovascular hypertension. Hypertension 25:796–802

    PubMed  CAS  Google Scholar 

  • Nakanishi S (1987) Substance P precursor and kininogen: their structures, gene organizations, and regulation. Physiol Rev 67:1117–1142

    PubMed  CAS  Google Scholar 

  • Nickenig G, Harrison DG (2002) The AT(1)-type angiotensin receptor in oxidative stress and atherogenesis: part I: oxidative stress and atherogenesis. Circulation 105:393–396

    PubMed  CAS  Google Scholar 

  • Nora EH, Munzenmaier H, Hansen-Smith FM, Lombard JH, Greene AS (1998) Localization of the ANG II type 2 receptor in the microcirculation of skeletal muscle. Am J Physiol 275:H1395–1403

    PubMed  CAS  Google Scholar 

  • Odya CE, Marinkovic DV, Hammon KJ, Stewart TA, Erdos EG (1978) Purification and properties of prolylcarboxypeptidase (angiotensinase C) from human kidney. J Biol Chem 253:5927–5931

    PubMed  CAS  Google Scholar 

  • Ogino Y, Costa T (1992) The epithelial phenotype of human neuroblastoma cells express bradykinin, endothelin, and angiotensin II receptors that stimulate phosphoinositide hydrolysis. J Neurochem 58:46–56

    PubMed  CAS  Google Scholar 

  • Ohashi H, Takagi H, Oh H, Suzuma K, Suzuma I, Miyamoto N, Uemura A, Watanabe D, Murakami T, Sugaya T, Fukamizu A, Honda Y (2004) Phosphatidylinositol 3-kinase/Akt regulates angiotensin II-induced inhibition of apoptosis in microvascular endothelial cells by governing survivin expression and suppression of caspase-3 activity. Circ Res 94:785–793

    PubMed  CAS  Google Scholar 

  • Oliveira MA, Carvalho MH, Nigro D, Passaglia Rde C, Fortes ZB (2002) Angiotensin-(1–7) and bradykinin interaction in diabetes mellitus: in vivo study. Peptides 23:1449–1455

    PubMed  CAS  Google Scholar 

  • Oliveira MA, Carvalho MH, Nigro D, Passaglia Rde C, Fortes ZB (2003) Elevated glucose blocks angiotensin-(1–7) and bradykinin interaction: the role of cyclooxygenase products. Peptides 24:449–454

    PubMed  CAS  Google Scholar 

  • Oliverio MI, Kim HS, Ito M, Le T, Audoly L, Best CF, Hiller S, Kluckman K, Maeda N, Smithies O, Coffman TM (1998) Reduced growth, abnormal kidney structure, and type 2 (AT2) angiotensin receptor-mediated blood pressure regulation in mice lacking both AT1A and AT1B receptors for angiotensin II. Proc Natl Acad Sci U S A 95:15496–15501

    PubMed  CAS  Google Scholar 

  • Orfanos SE, Chen XL, Ryan JW, Chung AY, Burch SE, Catravas JD (1994) Assay of pulmonary microvascular endothelial angiotensin-converting enzyme in vivo: comparison of three probes. Toxicol Appl Pharmacol 124:99–111

    PubMed  CAS  Google Scholar 

  • Orfanos SE, Langleben D, Khoury J, Schlesinger RD, Dragatakis L, Roussos C, Ryan JW, Catravas JD (1999) Pulmonary capillary endothelium-bound angiotensin-converting enzyme activity in humans. Circulation 99:1593–1599

    PubMed  CAS  Google Scholar 

  • Orfanos SE, Armaganidis A, Glynos C, Psevdi E, Kaltsas P, Sarafidou P, Catravas JD, Dafni UG, Langleben D, Roussos C (2000a) Pulmonary capillary endothelium-bound angiotensin-converting enzyme activity in acute lung injury. Circulation 102:2011–2018

    PubMed  CAS  Google Scholar 

  • Orfanos SE, Parkerson JB, Chen X, Fisher EL, Glynos C, Papapetropoulos A, Gerrity RG, Catravas JD (2000b) Reduced lungendothelial angiotensin-converting enzymeactivity in Watanabe hyperlipidemic rabbits in vivo. Am J Physiol Lung Cell Mol Physiol 278:L1280–1288

    PubMed  CAS  Google Scholar 

  • Osei SY, Ahima RS, Minkes RK, Weaver JP, Khosla MC, Kadowitz PJ (1993) Differential responses to angiotensin-(1–7) in the felinemesenteric and hindquarters vascular beds. Eur J Pharmacol 234:35–42

    PubMed  CAS  Google Scholar 

  • Papademetriou V (2002) The potential role of AT(1)-receptor blockade in the prevention and reversal of atherosclerosis. J Hum Hypertens 16Suppl 3:S34–41

    PubMed  CAS  Google Scholar 

  • Parenti A, Morbidelli L, Ledda F, Granger HJ, Ziche M (2001) The bradykinin/B1 receptor promotes angiogenesis by up-regulation of endogenous FGF-2 in endothelium via the nitric oxide synthase pathway. FASEB J 15:1487–1489

    PubMed  CAS  Google Scholar 

  • Passos GF, Fernandes ES, Campos MM, Araujo JG, Pesquero JL, Souza GE, Avellar MC, Teixeira MM, Calixto JB (2004) Kinin B1 receptor up-regulation after lipopolysaccharide administration: role of proinflammatory cytokines and neutrophil influx. J Immunol 172:1839–1847

    PubMed  CAS  Google Scholar 

  • Patchett AA (1984) The chemistry of enalapril. Br J Clin Pharmacol 18Suppl 2:201S–207S

    PubMed  Google Scholar 

  • Patel JM, Martens JR, Li YD, Gelband CH, Raizada MK, Block ER (1998) Angiotensin IV receptor-mediated activation of lung endothelial NOS is associated with vasorelaxation. Am J Physiol 275:L1061–1068

    PubMed  CAS  Google Scholar 

  • Paula RD, Lima CV, Khosla MC, Santos RAS (1995) Angiotensin-(1–7) potentiates the hypotensive effect of bradykinin in conscious rats. Hypertension 26:1154–1159

    PubMed  CAS  Google Scholar 

  • Perron MS, Gobeil F Jr, Pelletier S, Regoli D, Sirois P (1999) Involvement of bradykinin B1 and B2 receptors in pulmonary leukocyte accumulation induced by Sephadex beads in guinea pigs. Eur J Pharmacol 376:83–89

    PubMed  CAS  Google Scholar 

  • Pesquero JB, Araujo RC, Heppenstall PA, Stucky CL, Silva JA Jr, Walther T, Oliveira SM, Pesquero JL, Paiva AC, Calixto JB, Lewin GR, Bader M (2000) Hypoalgesia and altered inflammatory responses in mice lacking kinin B1 receptors. Proc Natl Acad Sci U S A 97:8140–8145

    PubMed  CAS  Google Scholar 

  • Phillips MI, Kagiyama S (2002) Angiotensin II as a pro-inflammatory mediator. Curr Opin Investig Drugs 3:569–577

    PubMed  CAS  Google Scholar 

  • Pitt BR, Lister G (1983) Pulmonary metabolic function in the awake lamb: effect of development and hypoxia. J Appl Physiol 55:383–391

    PubMed  CAS  Google Scholar 

  • Porsti I, Bara A, Busse R, Hecker M (1994) Release of nitric oxide by angiotensin-(1–7) from porcine coronary endothelium: implications for a novel angiotensin receptor [published erratum appears in Br J Pharmacol 1996 Jan;117(1):231]. Br J Pharmacol 111:652–654

    PubMed  CAS  Google Scholar 

  • Pueyo ME, N’Diaye N, Michel JB (1996) Angiotensin II-elicited signal transduction via AT1 receptors in endothelial cells. Br J Pharmacol 118:79–84

    PubMed  CAS  Google Scholar 

  • Pueyo ME, Arnal JF, Rami J, Michel JB (1998) Angiotensin II stimulates the production of NO and peroxynitrite in endothelial cells. Am J Physiol 274:C214–220

    PubMed  CAS  Google Scholar 

  • Ramchandran R, Sen I (1995) Cleavage processing of angiotensin-converting enzyme by a membrane-associated metalloprotease. Biochemistry 34:12645–12652

    PubMed  CAS  Google Scholar 

  • Regitz-Zagrosek V, Fielitz J, Fleck E (1998) Myocardial angiotensin receptors in human hearts. Basic Res Cardiol 93Suppl 2:37–42

    PubMed  CAS  Google Scholar 

  • Regoli D, Barabe J (1980) Pharmacology of bradykinin and related kinins. Pharmacol Rev 32:1–46

    PubMed  CAS  Google Scholar 

  • Ren Y, Garvin JL, Carretero OA (2002) Vasodilator action of angiotensin-(1–7) on isolated rabbit afferent arterioles. Hypertension 39:799–802

    PubMed  CAS  Google Scholar 

  • Rett K, JauchK W, Wicklmayr M, Dietze G, Fink E, Mehnert H (1986) Angiotensin converting enzyme inhibitors in diabetes: experimental and human experience. Postgrad Med J 62Suppl 1:59–64

    PubMed  CAS  Google Scholar 

  • Rett K, Wicklmayr M, Dietze GJ, Haring HU (1996) Insulin-induced glucose transporter (GLUT1 and GLUT4) translocation in cardiac muscle tissue is mimicked by bradykinin. Diabetes 45Suppl 1:S66–69

    PubMed  Google Scholar 

  • Rhinehart K, Handelsman CA, Silldorff P, Pallone TL (2003) ANGII AT2 receptormodulates AT1 receptor-mediated descending vasa recta endothelial Ca2+ signaling. Am J Physiol Heart Circ Physiol 284:H779–789

    PubMed  CAS  Google Scholar 

  • Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F (1990) An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 86:1343–1346

    PubMed  CAS  Google Scholar 

  • Riva L, Galzin AM (1996) Pharmacological characterization of a specific binding site for angiotensin IV in cultured porcine aortic endothelial cells. Eur J Pharmacol 305:193–199

    PubMed  CAS  Google Scholar 

  • Roks AJ, Nijholt J, van Buiten A, van Gilst WH, de Zeeuw D, Henning RH (2004) Lowsodium diet inhibits the local counter-regulator effect of angiotensin-(1–7) on angiotensin II. J Hypertens 22:2355–2361

    PubMed  CAS  Google Scholar 

  • Rousseau A, Michaud A, Chauvet MT, Lenfant M, Corvol P (1995) The hemoregulatory peptide N-acetyl-Ser-Asp-Lys-Pro is a natural and specific substrate of the N-terminal active site of human angiotensin-converting enzyme. J Biol Chem 270:3656–3661

    PubMed  CAS  Google Scholar 

  • Rueckschloss U, Quinn MT, Holtz J, Morawietz H (2002) Dose-dependent regulation of NAD(P)H oxidase expression by angiotensin II in human endothelial cells: protective effect of angiotensin II type 1 receptor blockade in patients with coronary artery disease. Arterioscler Thromb Vasc Biol 22:1845–1851

    PubMed  CAS  Google Scholar 

  • Rupniak NM, Boyce S, Webb JK, Williams AR, Carlson EJ, Hill RG, Borkowski JA, Hess JF (1997) Effects of the bradykinin B1 receptor antagonist des-Arg9[Leu8]bradykinin and genetic disruption of the B2 receptor on nociception in rats and mice. Pain 71:89–97

    PubMed  CAS  Google Scholar 

  • Ryan JW, Chung A, Ammons C, Carlton ML (1977) A simple radioassay for angiotensin-converting enzyme. Biochem J 167:501–504

    PubMed  CAS  Google Scholar 

  • Ryan JW, Chung A, Martin LC, Ryan US (1978) New substrates for the radioassay of angiotensin converting enzyme of endothelial cells in culture. Tissue Cell 10:555–562

    PubMed  CAS  Google Scholar 

  • Saito S, Hirata Y, Emori T, Imai T, Marumo F (1996) Angiotensin II activates endothelial constitutive nitric oxide synthase via AT1 receptors. Hypertens Res 19:201–206

    PubMed  CAS  Google Scholar 

  • Santhamma KR, Sadhukhan R, Kinter M, Chattopadhyay S, McCue B, Sen I (2004) Role of tyrosine phosphorylation in the regulation of cleavage secretion of angiotensin-converting enzyme. J Biol Chem 279:40227–40236

    PubMed  CAS  Google Scholar 

  • Sato M, Engelman RM, Otani H, Maulik N, Rousou JA, Flack JE III, Deaton DW, Das DK (2000) Myocardial protection by preconditioning of heart with losartan, an angiotensin II type 1-receptor blocker: implication of bradykinin-dependent and bradykinin-independent mechanisms. Circulation 102:346III–351

    Google Scholar 

  • Schiffrin EL (2001) Small artery remodeling in hypertension: can it be corrected? Am J Med Sci 322:7–11

    PubMed  CAS  Google Scholar 

  • Schiffrin EL, Park JB, Intengan HD, Touyz RM (2000) Correction of arterial structure and endothelial dysfunction in human essential hypertension by the angiotensin receptor antagonist losartan. Circulation 101:1653–1659

    PubMed  CAS  Google Scholar 

  • Schiffrin EL, Park JB, Pu Q (2002) Effect of crossing over hypertensive patients froma betablocker to an angiotensin receptor antagonist on resistance artery structure and on endothelial function. J Hypertens 20:71–78

    PubMed  CAS  Google Scholar 

  • Schmaier AH (2003) The kallikrein-kinin and the renin-angiotensin systems have a multilayered interaction. Am J Physiol Regul Integr Comp Physiol 285:R1–13

    PubMed  CAS  Google Scholar 

  • Segar JL, Barna TJ, Acarregui MJ, Lamb FS (2001) Responses of fetal ovine systemic and umbilical arteries to angiotensin II. Pediatr Res 49:826–833

    PubMed  CAS  Google Scholar 

  • Seyedi N, Xu X, Nasjletti A, Hintze TH (1995) Coronary kinin generation mediates nitric oxide release after angiotensin receptor stimulation. Hypertension 26:164–170

    PubMed  CAS  Google Scholar 

  • Shigematsu S, Ishida S, Gute DC, Korthuis RJ (2002) Bradykinin-induced proinflammatory signaling mechanisms. Am J Physiol Heart Circ Physiol 283:H2676–2686

    PubMed  CAS  Google Scholar 

  • Shinozaki K, Ayajiki K, Nishio Y, Sugaya T, Kashiwagi A, Okamura T (2004) Evidence for a causal role of the renin-angiotensin system in vascular dysfunction associated with insulin resistance. Hypertension 43:255–262

    PubMed  CAS  Google Scholar 

  • Shiuchi T, Cui TX, Wu L, Nakagami H, Takeda-Matsubara Y, Iwai M, Horiuchi M (2002) ACE inhibitor improves insulin resistance in diabetic mouse via bradykinin and NO. Hypertension 40:329–334

    PubMed  CAS  Google Scholar 

  • Shivakumar BR, Wang Z, Hammond TG, Harris RC (2004) EP24.15 interacts with the angiotensin II type I receptor and bradykinin B(2) receptor. Cell Biochem Funct 23:195–204

    Google Scholar 

  • Silvestre JS, Bergaya S, Tamarat R, Duriez M, Boulanger CM, Levy BI (2001) Proangiogenic effect of angiotensin-converting enzyme inhibition is mediated by the bradykinin B(2) receptor pathway. Circ Res 89:678–683

    PubMed  CAS  Google Scholar 

  • Siragy HM, Jaffa AA, Margolius HS, Carey RM (1996) Renin-angiotensin system modulates renal bradykinin production. Am J Physiol Regul Integr Comp Physiol 271:R1090–1095

    CAS  Google Scholar 

  • Skeggs LT Jr, Kahn JR, Shumway NP (1956) The preparation and function of the hypertensinconverting enzyme. J Exp Med 103:295–299

    PubMed  CAS  Google Scholar 

  • Soffer RL, Reza R, Caldwell PR (1974) Angiotensin-converting enzyme from rabbit pulmonary particles. Proc Natl Acad Sci U S A 71:1720–1724

    PubMed  CAS  Google Scholar 

  • Sohn HY, Raff U, Hoffmann A, Gloe T, Heermeier K, Galle J, Pohl U (2000) Differential role of angiotensin II receptor subtypes on endothelial superoxide formation. Br J Pharmacol 131:667–672

    PubMed  CAS  Google Scholar 

  • Soubrier F, Alhenc-Gelas F, Hubert C, Allegrini J, John M, Tregear G, Corvol P (1988) Two putative active centers in human angiotensin I-converting enzyme revealed bymolecular cloning. Proc Natl Acad Sci U S A 85:9386–9390

    PubMed  CAS  Google Scholar 

  • Sowers JR (2002) Hypertension, angiotensin II, and oxidative stress. N Engl J Med 346:1999–2001

    PubMed  Google Scholar 

  • Starke K, Schumann HJ (1972) Interactions of angiotensin, phenoxybenzamine and propranolol on noradrenaline release during sympathetic nerve stimulation. Eur J Pharmacol 18:27–30

    PubMed  CAS  Google Scholar 

  • Stewart JM (2003) Bradykinin antagonists as anti-cancer agents. Curr Pharm Des 9:2036–2042

    PubMed  CAS  Google Scholar 

  • Stoll M, Meffert S, Stroth U, Unger T (1995a) Growth or antigrowth: angiotensin and the endothelium. J Hypertens 13:1529–1534

    PubMed  CAS  Google Scholar 

  • Stoll M, Steckelings UM, Paul M, Bottari SP, Metzger R, Unger T (1995b) The angiotensin AT2-receptor mediates inhibition of cell proliferation in coronary endothelial cells. J Clin Invest 95:651–657

    PubMed  CAS  Google Scholar 

  • Strawn WB, Ferrario CM (2002) Mechanisms linking angiotensin II and atherogenesis. Curr Opin Lipidol 13:505–512

    PubMed  CAS  Google Scholar 

  • Swanson GN, Hanesworth JM, Sardinia MF, Coleman JK, Wright JW, Hall KL, Miller-Wing AV, Stobb JW, Cook VI, Harding EC, et al (1992) Discovery of a distinct binding site for angiotensin II (3–8), a putative angiotensin IV receptor. Regul Pept 40:409–419

    PubMed  CAS  Google Scholar 

  • Sweet CS (1983) Pharmacological properties of the converting enzyme inhibitor, enalapril maleate (MK-421). Fed Proc 42:167–170

    PubMed  CAS  Google Scholar 

  • Takeuchi K (1999) Signal transduction systems of angiotensin II receptors. Nippon Rinsho 57:1070–1077

    PubMed  CAS  Google Scholar 

  • Tallant EA, Lu X, Weiss RB, Chappell MC, Ferrario CM (1997) Bovine aortic endothelial cells contain an angiotensin-(1–7) receptor. Hypertension 29:388–392

    PubMed  CAS  Google Scholar 

  • Tamarat R, Silvestre JS, Durie M, Levy BI (2002) Angiotensin II angiogenic effect in vivo involves vascular endothelial growth factor-and inflammation-related pathways. Lab Invest 82:747–756

    PubMed  CAS  Google Scholar 

  • Tan Y, Hutchison FN, Jaffa AA (2004) Mechanisms of angiotensin II-induced expression of B2 kinin receptors. Am J Physiol Heart Circ Physiol 286:H926–932

    PubMed  CAS  Google Scholar 

  • Tanimoto K, Sugiyama F, Goto Y, Ishida J, Takimoto E, Yagami K, Fukamizu A, Murakami K (1994) Angiotensinogen-deficient mice with hypotension. J Biol Chem 269:31334–31337

    PubMed  CAS  Google Scholar 

  • Tatemoto K, Takayama K, Zou MX, Kumaki I, Zhang W, Kumano K, Fujimiya M (2001) The novel peptide apelin lowers blood pressure via a nitric oxide-dependent mechanism. Regul Pept 99:87–92

    PubMed  CAS  Google Scholar 

  • Tayeh MA, Scicli AG (1998) Angiotensin II and bradykinin regulate the expression of P-selectin on the surface of endothelial cells in culture. Proc Assoc Am Physicians 110:412–421

    PubMed  CAS  Google Scholar 

  • Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ (2000) A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 275:33238–33243

    PubMed  CAS  Google Scholar 

  • Todd PA, Heel RC (1986) Enalapril. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in hypertension and congestive heart failure. Drugs 31:198–248

    PubMed  CAS  Google Scholar 

  • Tom B, de Vries R, Saxena PR, Danser AHJ (2001) Bradykinin potentiation by angiotensin-(1–7) and ACE inhibitors correlates with ACE C-and N-domain blockade. Hypertension 38:95–99

    PubMed  CAS  Google Scholar 

  • Tom B, Dendorfer A, Danser AH (2003) Bradykinin, angiotensin-(1–7), and ACE inhibitors: how do they interact? Int J Biochem Cell Biol 35:792–801

    PubMed  CAS  Google Scholar 

  • Tomita H, Egashira K, Ohara Y, Takemoto M, Koyanagi M, Katoh M, Yamamoto H, Tamaki K, Shimokawa H, Takeshita A (1998) Early induction of transforming growth factor-beta via angiotensin II type 1 receptors contributes to cardiac fibrosis induced by long-term blockade of nitric oxide synthesis in rats. Hypertension 32:273–279

    PubMed  CAS  Google Scholar 

  • Torlone E, Rambotti AM, Perriello G, Botta G, Santeusanio F, Brunetti P, Bolli GB (1991) ACE-inhibition increases hepatic and extrahepatic sensitivity to insulin in patients with type 2 (non-insulin-dependent) diabetes mellitus and arterial hypertension. Diabetologia 34:119–125

    PubMed  CAS  Google Scholar 

  • Tsuchida S, Matsusaka T, Chen X, Okubo S, Niimura F, Nishimura H, Fogo A, Utsunomiya H, Inagami T, Ichikawa I (1998) Murine double nullizygotes of the angiotensin type 1A and 1B receptor genes duplicate severe abnormal phenotypes of angiotensinogen nullizygotes. J Clin Invest 101:755–760

    PubMed  CAS  Google Scholar 

  • Tsuchida S, Miyazaki Y, Matsusaka T, Hunley TE, Inagami T, Fogo A, Ichikawa I (1999) Potent antihypertrophic effect of the bradykinin B2 receptor system on the renal vasculature. Kidney Int 56:509–516

    PubMed  CAS  Google Scholar 

  • Tsutsumi Y, Matsubara H, Masaki H, Kurihara H, Murasawa S, Takai S, Miyazaki M, Nozawa Y, Ozono R, Nakagawa K, Miwa T, Kawada N, Mori Y, Shibasaki Y, Tanaka Y, Fujiyama S, Koyama Y, Fujiyama A, Takahashi H, Iwasaka T (1999) Angiotensin II type 2 receptor overexpression activates the vascular kinin systemand causes vasodilation. J Clin Invest 104:925–935

    PubMed  CAS  Google Scholar 

  • Turner AJ, Hooper NM (2002) The angiotensin-converting enzyme gene family: genomics and pharmacology. Trends Pharmacol Sci 23:177–183

    PubMed  CAS  Google Scholar 

  • Ullian ME, Walsh LG, Morinelli TA (1996) Potentiation of angiotensin II action by corticosteroids in vascular tissue. Cardiovasc Res 32:266–273

    PubMed  CAS  Google Scholar 

  • Vaughan D (2000) Pharmacology of ACE inhibitors versus AT1 blockers. Can J Cardiol 16Suppl E:36E–40E

    PubMed  Google Scholar 

  • Vavrek RJ, Stewart JM (1985) Competitive antagonists of bradykinin. Peptides 6:161–164

    PubMed  CAS  Google Scholar 

  • Vaziri ND, Ding Y, Ni Z, Barton CH (2005) Bradykinin down-regulates whereas arginine analogs up-regulate eNOS expression in coronary endothelial cells. J Pharmacol Exp Ther 313:121–126

    PubMed  CAS  Google Scholar 

  • Venema RC (2002) Post-translational mechanisms of endothelial nitric oxide synthase regulation by bradykinin. Int Immunopharmacol 2:1755–1762

    PubMed  CAS  Google Scholar 

  • Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J, Godbout K, Parsons T, Baronas E, Hsieh F, Acton S, Patane M, Nichols A, Tummino P (2002) Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem 277:14838–14843

    PubMed  CAS  Google Scholar 

  • Viswanathan M, Saavedra JM (1992) Expression of angiotensin II AT2 receptors in the rat skin during experimental wound healing. Peptides 13:783–786

    PubMed  CAS  Google Scholar 

  • Wang CH, Leung N, Lapointe N, Szeto L, Uffelman KD, Giacca A, Rouleau JL, Lewis GF (2003) Vasopeptidase inhibitor omapatrilat induces profound insulin sensitization and increases myocardial glucose uptake in Zucker fatty rats: studies comparing a vasopeptidase inhibitor, angiotensin-converting enzyme inhibitor, and angiotensin II type I receptor blocker. Circulation 107:1923–1929

    PubMed  CAS  Google Scholar 

  • Warnholtz A, Nickenig G, Schulz E, Macharzina R, Brasen JH, Skatchkov M, Heitzer T, Stasch JP, Griendling KK, Harrison DG, Bohm M, Meinertz T, Munzel T (1999) Increased NADH-oxidase-mediated superoxide production in the early stages of atherosclerosis: evidence for involvement of the renin-angiotensin system. Circulation 99:2027–2033

    PubMed  CAS  Google Scholar 

  • Wassmann S, Hilgers S, Laufs U, Bohm M, Nickenig G (2002) Angiotensin II type 1 receptor antagonism improves hypercholesterolemia-associated endothelial dysfunction. Arterioscler Thromb Vasc Biol 22:1208–1212

    PubMed  CAS  Google Scholar 

  • Watanabe T, Suzuki J, Yamawaki H, Sharma VK, Sheu SS, Berk BC (2005) Losartanmetabolite EXP3179 activates Akt and endothelial nitric oxide synthase via vascular endothelial growth factor receptor-2 in endothelial cells: angiotensin II type 1 receptor-independent effects of EXP3179. Circulation 112:1798–1805

    PubMed  CAS  Google Scholar 

  • Wei CC, Ferrario CM, Brosnihan KB, Farrell DM, Bradley WE, Jaffa AA, Dell’Italia LJ (2002) Angiotensin peptides modulate bradykinin levels in the interstitium of the dog heart in vivo. J Pharmacol Exp Ther 300:324–329

    PubMed  CAS  Google Scholar 

  • Williams TA, Michaud A, Houard X, Chauvet MT, Soubrier F, Corvol P (1996) Drosophila melanogaster angiotensin I-converting enzyme expressed in Pichia pastoris resembles the C domain of the mammalian homologue and does not require glycosylation for secretion and enzymic activity. Biochem J 318:125–131

    PubMed  CAS  Google Scholar 

  • Witherow FN, Helmy A, Webb DJ, Fox KAA, Newby DE (2001) Bradykinin contributes to the vasodilator effects of chronic angiotensin-converting enzyme inhibition in patients with heart failure. Circulation 104:2177–2181

    PubMed  CAS  Google Scholar 

  • Wright JW, Harding JW (1995) Brain angiotensin receptor subtypes AT1, AT2, and AT4 and their functions. Regul Pept 59:269–295

    PubMed  CAS  Google Scholar 

  • Yan C, Kim D, Aizawa T, Berk BC (2003) Functional interplay between angiotensin II and nitric oxide: cyclic GMP as a key mediator. Arterioscler Thromb Vasc Biol 23:26–36

    PubMed  CAS  Google Scholar 

  • Yanai K, Saito T, Kakinuma Y, Kon Y, Hirota K, Taniguchi-Yanai K, Nishijo N, Shigematsu Y, Horiguchi H, Kasuya Y, Sugiyama F, Yagami K, Murakami K, Fukamizu A (2000) Renin-dependent cardiovascular functions and renin-independent blood-brain barrier functions revealed by renin-deficient mice. J Biol Chem 275:5–8

    PubMed  CAS  Google Scholar 

  • Yang C, Hsu WH (1995) Stimulatory effect of bradykinin on insulin release from the perfused rat pancreas. Am J Physiol 268:E1027–1030

    PubMed  CAS  Google Scholar 

  • Yang HY, Erdos EG (1967) Second kininase in human blood plasma. Nature 215:1402–1403

    PubMed  CAS  Google Scholar 

  • Yang HY, Erdos EG, Levin Y (1970) Adipeptidyl carboxypeptidase that converts angiotensin I and inactivates bradykinin. Biochim Biophys Acta 214:374–376

    PubMed  CAS  Google Scholar 

  • Yang HY, Erdos EG, Levin Y (1971) Characterization of a dipeptide hydrolase (kininase II: angiotensin I converting enzyme). J Pharmacol Exp Ther 177:291–300

    PubMed  CAS  Google Scholar 

  • Yoo KH, Thornhill BA, Wolstenholme JT, Chevalier RL (1998) Tissue-specific regulation of growth factors and clusterin by angiotensin II. Am J Hypertens 11:715–722

    PubMed  CAS  Google Scholar 

  • Yosipiv IV, Dipp S, El-Dahr SS (2001) Targeted disruption of the bradykinin B(2) receptor gene in mice alters the ontogeny of the renin-angiotensin system. Am J Physiol Renal Physiol 281:F795–801

    PubMed  CAS  Google Scholar 

  • Zuccollo A, Navarro M, Frontera M, Cueva F, Carattino M, Catanzaro OL (1999) The involvement of kallikrein-kinin system in diabetes type I (insulitis). Immunopharmacology 45:69–74

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Catravas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dimitropoulou, C., Chatterjee, A., McCloud, L., Yetik-Anacak, G., Catravas, J.D. (2006). Angiotensin, Bradykinin and the Endothelium. In: Moncada, S., Higgs, A. (eds) The Vascular Endothelium I. Handbook of Experimental Pharmacology, vol 176/I. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32967-6_8

Download citation

Publish with us

Policies and ethics