Skip to main content

Functional Ultrastructure of the Vascular Endothelium: Changes in Various Pathologies

  • Chapter
The Vascular Endothelium I

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 176/I))

Abstract

Biology has revealed that form follows function or function creates the organ. Translating this law at the cellular level, we may say that the ultrastructure follows function or function creates the ultrastructure. The vascular endothelium is an accurate illustration of this rule due to its numerous and many-sided functions carried out by highly specialised cells, structurally equipped for their tasks. Occupying a strategic position between the blood and tissues, the endothelial cell (EC) tightly monitors the transport of plasma molecules, employing bidirectional receptor-mediated and receptor-independent transcytosis and endocytosis, regulates the vascular tone, synthesises and secretes a large variety of factors, and is implicated in the regulation of cell cholesterol, lipid homeostasis, signal transduction, immunity, inflammation and haemostasis. Ultrastructurally, besides the common set of organelles, the characteristic features of the ECs are the particularly high number of vesicles (caveolae) endowed with numerous receptors, transendothelial channels, the specialised plasma membrane microdomains of distinct chemistry, and characteristic intercellular junctions. In addition, by virtue of their number (∼6 × 1013), aggregated mass (∼1 kg), large surface area (∼7,000 m2) and distribution throughout the body, the ECs can perform all the assumed functions. The vascular endothelium, with its broad spectrum of paracrine, endocrine and autocrine functions, can be regarded as a multifunctional organ and chief governor of body homeostasis. The ECs exists in a high-risk position. The cells react progressively to aggressive factors, at first by modulation of the constitutive functions (permeability, synthesis), followed by EC dysfunction (loss, impairment or new functions); if the insults persist (in time or intensity), cell damage and death ultimately occur. In conclusion, the ECs are daring cells that have the functional-structural attributes to adapt to the ever-changing surrounding milieu, to use innate mechanisms to confront and defend against insults and to monitor and maintain the body’s homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antohe F, Heltianu C, Simionescu N (1986) Further evidence for the distribution and nature of histamine receptors on microvascular endothelium. Microcirc Endothelium Lymphatics 3:163–185

    PubMed  CAS  Google Scholar 

  • Antohe F, Dobrila LN, Heltianu C (1989) Histamine receptors on mast cells. Microcirc Endothelium Lymphatics 4:469–488

    Google Scholar 

  • Antohe F, Poznansky MJ, Simionescu M (1999) Low density lipoprotein binding induces asymmetric redistribution of the low density lipoprotein receptors in endothelial cells. Eur J Cell Biol 78:407–415

    PubMed  CAS  Google Scholar 

  • Antohe F, Radulescu L, Gafencu A, Ghetie V, Simionescu M (2001) Expression of functionally active FcRn and the differentiated bidirectional transport of IgG in human placental endothelial cells. Hum Immunol 62:93–105

    Article  PubMed  CAS  Google Scholar 

  • Bearer EL, Orci L (1976) Endothelial fenestral diaphragms: a quick-freeze, deep-etch study. J Cell Biol 100:418–428

    Article  Google Scholar 

  • Betsholtz C, Lindblom P, Gerhardt H (2005) Role of pericytes in vascular morphogenesis. EXS 94:115–125

    PubMed  Google Scholar 

  • Dejana E (2004) Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Biol 5:261–270

    Article  PubMed  CAS  Google Scholar 

  • Drenckhahn D, Ness DW (1997) The endothelial contractile cytoskeleton. In: Born GVR, Schwartz CJ (eds) Vascular endothelium: physiology, pathology and therapeutic opportunities. Schattauer, Stuttgart, pp 1–15

    Google Scholar 

  • Farkas E, Luiten PG (2001) Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog Neurobiol 64:575–611

    Article  PubMed  CAS  Google Scholar 

  • Gafencu A, Stanescu M, Toderici AM, Heltianu C, Simionescu M (1998) Protein and fatty acid composition of caveolae from apical plasmalemma of aortic endothelial cells. Cell Tissue Res 293:101–110

    Article  PubMed  CAS  Google Scholar 

  • Ghetie V, Hubbard JG, Kim JK, Tsen MF, Lee Y, Ward ES (1996) Abnormally short serum half-lives of IgG in beta 2-microglobulin-deficient mice. Eur J Immunol 26:690–696

    PubMed  CAS  Google Scholar 

  • Ghitescu L, Fixman A, Simionescu M, Simionescu N (1986) Specific binding sites for albumin restricted to plasmalemmal vesicles of continuous capillary endothelium: receptor-mediated transcytosis. J Cell Biol 102:1304–1311

    Article  PubMed  CAS  Google Scholar 

  • Giri R, Selvaraj S, Miller CA, Hofman F, Yan SD, Stern D, Zlokovic BV, Kalra VK (2002) Effect of endothelial cell polarity on β-amyloid-induced migration of monocytes across normal and AD endothelium. Am J Physiol Cell Physiol 283:C89–C904

    Google Scholar 

  • Haselton FR, Alexander JS, Mueller SN, Fishman AP (1992) Modulation of endothelial paracellular permeability. A mechanistic approach. In: Simionescu N, Simionescu M (eds) Endothelial cell dysfunctions. Plenum Press, New York, pp 103–126

    Google Scholar 

  • Heltianu C, Simionescu M, Simionescu N (1982) Histamine receptors of the microvascular endothelium revealed in situ with a histamine-ferritin conjugate: characteristic highaffinity binding sites in venules. J Cell Biol 93:357–364

    Article  PubMed  CAS  Google Scholar 

  • Lisanti MP, Scherer PE, Vidugiriene J, Tang Z, Hermanowski-Vosatka A, Tu YH, Cook RF, Sargiacomo M (1994) Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source: implications for human disease. J Cell Biol 126:111–126

    Article  PubMed  CAS  Google Scholar 

  • Martin AR, Bailie JR, Robson T, McKeown SR, Al-Assar O, McFarland A, Hirst DG (2000) Retinal pericytes control expression of nitric oxide synthase and endothelin-1 in microvascular endothelial cells. Microvasc Res 59:131–139

    Article  PubMed  CAS  Google Scholar 

  • McIntosh DP, Schnitzer JE (1999) Caveolae require intact VAMP for targeted transport in vascular endothelium. Am J Physiol 277:H2222–H2232

    PubMed  CAS  Google Scholar 

  • Mineo C, Anderson RG (2001) Potocytosis. Histochem Cell Biol 116:109–118

    PubMed  CAS  Google Scholar 

  • Minshall RD, Sessa WC, Stan RV, Anderson RG, Malik AB (2003) Caveolin regulation of endothelial function. Am J Physiol Lung Cell Mol Physiol 285:L1179–L1183

    PubMed  CAS  Google Scholar 

  • Muller WA, Gimbrone MA Jr (1986) Plasmalemmal proteins of cultured vascular endothelial cells exhibit apical-basal polarity: analysis by surface-selective iodination. J Cell Biol 103:2389–2402

    Article  PubMed  CAS  Google Scholar 

  • Oh P, McIntosh DP, Schnitzer JE (1998) Dynamin at the neck of caveolae mediates their budding to formtransport vesicles by GTP-driven fission from the plasma membrane of endothelium. J Cell Biol 141:101–114

    Article  PubMed  CAS  Google Scholar 

  • Page C, Rose M, Yacoub M, Pigott R (1992) Antigenic heterogeneity of vascular endothelium. Am J Pathol 141:673–683

    PubMed  CAS  Google Scholar 

  • Palade GE (1953) An electron microscope study of the mitochondrial structure. J Histochem Cytochem 1:188–211

    PubMed  CAS  Google Scholar 

  • Pino RM (1986) The cell surface of a restrictive fenestrated endothelium. I. Distribution of lectin-receptor monosaccharides on the choriocapillaries. Cell Tissue Res 243:145–156

    Article  PubMed  CAS  Google Scholar 

  • Razani B, Woodman SE, Lisanti MP (2002) Caveolae: from cell biology to animal physiology. Pharmacol Rev 54:431–467

    Article  PubMed  CAS  Google Scholar 

  • Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, Anderson RG (1992) Caveolin, a protein component of caveolae membrane coats. Cell 68:673–682

    Article  PubMed  CAS  Google Scholar 

  • Sage H, Trueb B, Bornstein P (1983) Biosynthetic and structural properties of endothelial cell type VIII collagen. J Biol Chem 258:13391–13401

    PubMed  CAS  Google Scholar 

  • Schmelz M, Franke WW (1993) Complexus adhaerentes, a new group of desmoplakin-containing junctions in endothelial cells: the syndesmos connecting retothelial cells of lymph nodes. Eur J Cell Biol 61:274–289

    PubMed  CAS  Google Scholar 

  • Schmidt AM, Hasu M, Popov D, Zhang JH, Chen J, Yan SD, Brett J, Cao R, Kuwabara K, Costache G, Simionescu N, Simionescu M, Stern D (1994) Receptor for advanced glycation end products (AGEs) has a central role in vesselwall interactions and gene activation in response to circulating AGE proteins. Proc Natl Acad Sci USA 91:8807–8811

    Article  PubMed  CAS  Google Scholar 

  • Schnitzer JE, Liu J, Oh P (1995) Endothelial caveolae have the molecular transport machinery for vesicle budding, docking, and fusion including VAMP, NSF, SNAP, annexins, and GTPases. J Biol Chem 270:14399–14404

    Article  PubMed  CAS  Google Scholar 

  • Shepro D, Dunham B (1986) Endothelial cell metabolism of biogenic amines. Annu Rev Physiol 48:335–345

    Article  PubMed  CAS  Google Scholar 

  • Simionescu M (1991) Cellular organization of the alveolar capillary unit: structural-functional correlations. In: Said SI (ed) The pulmonary circulation and acute lung injury. Futura Publishing Company. Mount Kisko, New York, pp 13–42

    Google Scholar 

  • Simionescu M (2001) Effect of hyperlipemia-hyperglycemia on the vascular endothelium. In: Catravas JD, Callow AD, Ryan US, Simionescu M (eds) Vascular endothelium source and target for inflammatory mediators. NATO ASI Series, New York, pp 87–99

    Google Scholar 

  • Simionescu M (2004) Endothelial cell—a key player in all stages of atherosclerosis. In: Simionescu M, Sima A, Popov D (eds) Cellular dysfunction in atherosclerosis and diabetes—reports frombench to bedside. Romanian Academy Publishing House, Bucharest, pp 73–97

    Google Scholar 

  • Simionescu M, Simionescu N (1991) Endothelial transport of macromolecules. Transcytosis and endocytosis. a look from cell biology. Cell Biol Rev 25:47–61

    Google Scholar 

  • Simionescu M, Simionescu N, Palade GE(1975b) Segmental differentiations of cell junctions in the vascular endothelium. The microvasculature. J Cell Biol 67:863–885

    Article  PubMed  CAS  Google Scholar 

  • Simionescu M, Simionescu N, Palade GE (1982a) Differentiated microdomains on the luminal surface of the capillary endothelium. I. Distribution of lectin receptors. J Cell Biol 94:406–413

    Article  PubMed  CAS  Google Scholar 

  • Simionescu M, Simionescu N, Palade GE (1982b) Preferential distribution of anionic sites on the basement membrane and the abluminal aspect of the endotheliumin fenestrated capillaries. J Cell Biol 95:425–434

    Article  PubMed  CAS  Google Scholar 

  • Simionescu M, Popov D, Sima A, Hasu M, Costache G, Faitar S, Vulpanovici A, Stancu C, Stern D, Simionescu N (1996) Pathobiochemistry of combined diabetes and atherosclerosis studied on a novel animal model. The hyperlipemic-hyperglicemic hamster. Am J Pathol 148:997–1014

    PubMed  CAS  Google Scholar 

  • Simionescu M, Sima A, Popov D, Hasu M, Costache G (1997) Pathobiology of the wall in combined diabetes and atherosclerosis. In:Motta PM (ed) Recent advances in microscopy of cell, tissues and organs. Antonio Delfino Editore, Rome, pp 339–343

    Google Scholar 

  • Simionescu M, Gafencu A, Antohe F (2002) Transcytosis of plasma macromolecules in endothelial cells: a cell biological survey. Microsc Res Tech 57:269–288

    Article  PubMed  CAS  Google Scholar 

  • Simionescu N (1979) The microvascular endothelium: segmental differentiations, transcytosis, selective distribution of anionic sites. In: Weissman G, Samuelson B, Paoletti R (eds) Advances in inflammation research. Raven Press, New York, pp 61–70

    Google Scholar 

  • Simionescu N, Simionescu M, Palade GE (1975a) Permeability of muscle capillaries to small hemepeptides. Evidence for the existence of patent transendothelial channels. J Cell Biol 64:586–607

    Article  PubMed  CAS  Google Scholar 

  • Simionescu N, Simionescu M, Palade GE (1981) Differentiated microdomains on the luminal surface of the capillary endothelium. I. Preferential distribution of anionic sites. J Cell Biol 90:605–613

    Article  PubMed  CAS  Google Scholar 

  • Simionescu N, Lupu F, Simionescu M (1983) Rings of membrane sterols surround the opening of vesicles and fenestrae in capillary endothelium. J Cell Biol 97:1592–1600

    Article  PubMed  CAS  Google Scholar 

  • Simionescu N, Mora R, Vasile E, Lupu F, Filip DA, Simionescu M (1990) Prelesional modifications of the vessel wall in hyperlipidemic atherogenesis. Extracellular accumulation of modified and reassembled lipoproteins. Ann NY Acad Sci 598:1–16

    Article  PubMed  CAS  Google Scholar 

  • Sims DE (2000) Diversity within pericytes. Clin Exp Pharmacol Physiol 27:842–846

    Article  PubMed  CAS  Google Scholar 

  • Stan RV, Tkachenko E, Niesman IR (2004) PV1 is a key structural component for the formation of the stomatal and fenestral diaphragms. Mol Biol Cell 15:3615–3630

    Article  PubMed  CAS  Google Scholar 

  • Steinbrecher UP (1999) Receptors for oxidized low density lipoprotein. Biochim Biophys Acta 1436:279–298

    PubMed  CAS  Google Scholar 

  • Tiruppathi C, Song W, Bergenfeldt M, Sass P, Malik AB (1997) Gp60 activation mediates albumin transcytosis in endothelial cells by tyrosine kinase-dependent pathway. J Biol Chem 272:25968–25975

    Article  PubMed  CAS  Google Scholar 

  • Tuma PL, Hubbard AL (2003) Transcytosis: crossing cellular barriers. Physiol Rev 83:871–932

    PubMed  CAS  Google Scholar 

  • Weibel ER, Palade GE (1964) New cytoplasmic components in arterial endothelia. J Cell Biol 23:101–112

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Simionescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Simionescu, M., Antohe, F. (2006). Functional Ultrastructure of the Vascular Endothelium: Changes in Various Pathologies. In: Moncada, S., Higgs, A. (eds) The Vascular Endothelium I. Handbook of Experimental Pharmacology, vol 176/I. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32967-6_2

Download citation

Publish with us

Policies and ethics