Skip to main content

Transport Across the Endothelium: Regulation of Endothelial Permeability

  • Erratum
  • Chapter
  • 1625 Accesses

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 176/I))

Abstract

An important function of the endothelium is to regulate the transport of liquid and solutes across the semi-permeable vascular endothelial barrier. Two cellular pathways controlling endothelial barrier function have been identified. The transcellular pathway transports plasma proteins of the size of albumin or greater via the process of transcytosis in vesicle carriers originating from cell surface caveolae. Specific signalling cues are able to induce the internalisation of caveolae and their movement to the basal side of the endothelium. Caveolin-1, the primary structural protein required for the formation of caveolae, is also important in regulating vesicle trafficking through the cell by controlling the activity and localisation of signalling molecules that mediate vesicle fission, endocytosis, fusion and finally exocytosis. An important function of the transcytotic pathways is to regulate the delivery of albumin and immunoglobulins, thereby controlling tissue oncotic pressure and host-defence. The paracellular pathway induced during inflammation is formed by gaps between endothelial cells at the level of adherens and tight junctional complexes. Paracellular permeability is increased by second messenger signalling pathways involving Ca2+ influx via activation of store-operated channels, protein kinase Cα (PKCα), and Rho kinase that together participate in the stimulation of myosin light chain phosphorylation, actin-myosin contraction, and disruption of the junctions. In this review of the field, we discuss the current understanding of the signalling pathways regulating paracellular and transcellular endothelial permeability.

The online version of the original chapter can be found athttp://dx.doi.org/10.1007/3-540-32967-6_4

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aberle H, Schwartz H, Kemler R (1996) Cadherin-catenin complex: protein interactions and their implications for cadherin function. J Cell Biochem 61:514–523

    Article  PubMed  CAS  Google Scholar 

  • Abraham E (2003) Neutrophils and acute lung injury. Crit Care Med 31:S195–199

    Article  PubMed  Google Scholar 

  • Ahn S, Maudsley S, Luttrell LM, Lefkowitz RJ, Daaka Y (1999) Srcmediated tyrosine phosphorylation of dynamin is required for β2-adrenergic receptor internalization and mitogen-activated protein kinase signaling. J Biol Chem 274:1185–1188

    Article  PubMed  CAS  Google Scholar 

  • Ahn S, Kim J, Lucaveche CL, Reedy MC, Luttrell LM, Lefkowitz RJ, Daaka Y (2002) Src-dependent tyrosine phosphorylation regulates dynamin self-assembly and ligandinduced endocytosis of the epidermal growth factor receptor. J Biol Chem 277:26642–26651

    Article  PubMed  CAS  Google Scholar 

  • Albelda SM, Smith CW, Ward PA (1994) Adhesion molecules and inflammatory injury. FASEB J 8:504–512

    PubMed  CAS  Google Scholar 

  • Anderson RGW (1991) Molecular motors that shape endocytic membrane. In: Steer CJ, Hanford J (eds) Intracellular trafficking of proteins. Cambridge University Press, Cambridge, pp 13–46

    Google Scholar 

  • Anderson RGW (1998) The caveolae membrane system. Annu Rev Biochem 67:199–225

    Article  PubMed  CAS  Google Scholar 

  • Antohe F, Dobrila L, Heltianu C, Simionescu N, Simionescu M (1993) Albumin-binding proteins function in the receptor-mediated binding and transcytosis of albumin across cultured endothelial cells. Eur J Cell Biol 60:268–275

    PubMed  CAS  Google Scholar 

  • Aoki T, Nomura R, Fujimoto T (1999) Tyrosine phosphorylation of caveolin-1 in the endothelium. Exp Cell Res 253:629–636

    Article  PubMed  CAS  Google Scholar 

  • Azoulay E, Attalah H, Yang K, Jouault H, Schlemmer B, Brun-Buisson C, Brochard L, Harf A, Delclaux C (2002) Exacerbation by granulocyte colony-stimulating factor of prior acute lung injury: implication of neutrophils. Crit Care Med 30:2115–2122

    Article  PubMed  CAS  Google Scholar 

  • Bauer PM, Yu J, Chen Y, Hickey R, Bernatchez PN, Looft-Wilson R, Huang Y, Giordano F, Stan RV, Sessa WC (2005) Endothelial-specific expression of caveolin-1 impairs microvascular permeability and angiogenesis. Proc Natl Acad Sci USA 102:204–209

    Article  PubMed  CAS  Google Scholar 

  • Beckman JS (1996) Oxidative damage and tyrosine nitration from peroxynitrite. Chem Res Toxicol 9:836–844

    Article  PubMed  CAS  Google Scholar 

  • Benard V, Bohl BP, Bokoch GM (1999) Characterization of rac and cdc42 activation in chemoattractant-stimulated human neutrophils using a novel assay for active GTPases. J Biol Chem 274:13198–13204

    Article  PubMed  CAS  Google Scholar 

  • Bird GS, Putney JW Jr (1993) Inhibition of thapsigargin-induced calcium entry by microinjected guanine nucleotide analogues. Evidence for the involvement of a small G-protein in capacitative calcium entry. J Biol Chem 268:21486–21488

    PubMed  CAS  Google Scholar 

  • Birukova AA, Smurova K, Birukov KG, Kaibuchi K, Garcia JGN, Verin AD (2004) Role of Rho GTPases in thrombin-induced lung vascular endothelial cell barrier function. Microvasc Res 67:64–77

    Article  PubMed  CAS  Google Scholar 

  • Brown MS, Goldstein JL (1983) Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem 52:223–261

    Article  PubMed  CAS  Google Scholar 

  • Bucci M, Gratton JP, Rudic RD, Acevedo L, Roviezzo F, Cirino G, Sessa WC (2000) In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nat Med 6:1362–1367

    Article  PubMed  CAS  Google Scholar 

  • Cao H, Courchesne WE, Mastick CC (2002) A phosphotyrosine-dependent protein interaction screen reveals a role for phosphorylation of caveolin-1 on tyrosine 14: recruitment of C-terminal Src kinase. J Biol Chem 277:8771–8774

    Article  PubMed  CAS  Google Scholar 

  • Cao H, Orth JD, Chen J, Weller SG, Heuser JE, McNiven MA (2003) Cortactin is a component of clathrin-coated pits and participates in receptor-mediated endocytosis. Mol Cell Biol 23:2162–2170

    Article  PubMed  CAS  Google Scholar 

  • Carson MR, Shasby S, Shasby DM (1989)Histamine and inositol phosphate accumulation in endothelium: cAMP and a G protein. Am J Physiol Lung Cell Mol Physiol 257:L259–L264

    CAS  Google Scholar 

  • Chen Y, Norkin LC (1999) Extracellular simian virus 40 transmits a signal that promotes virus enclosure within caveolae. Exp Cell Res 246:83–90

    Article  PubMed  CAS  Google Scholar 

  • Cirino G, Fiorucci S, Sessa WC (2003) Endothelial nitric oxide synthase: the Cinderella of inflammation? Trends Pharmacol Sci 24:91–95

    Article  PubMed  CAS  Google Scholar 

  • Comerford KM, Lawrence DW, Synnestvedt K, Levi BP, Colgan SP (2002)Role of vasodilator-stimulated phosphoprotein in PKA-induced changes in endothelial junctional permeability. FASEB J 16:583–585

    PubMed  CAS  Google Scholar 

  • Connelly L, Palacios-Callender M, Ameixa C, Moncada S, Hobbs AJ (2001) Biphasic regulation of NF-kappa B activity underlies the pro-and anti-inflammatory actions of nitric oxide. J Immunol 166:3873–3881

    PubMed  CAS  Google Scholar 

  • Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422:37–44

    Article  PubMed  CAS  Google Scholar 

  • Corada M, Mariotti M, Thurston G, Smith K, Kunkel R, Brockhaus M, Lampugnani MG, Martin-Padura I, Stoppacciaro A, Ruco L, McDonald DM, Ward PA, Dejana E (1999) Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc Natl Acad Sci USA 96:9815–9820

    Article  PubMed  CAS  Google Scholar 

  • Dejana E (1996) Endothelial adherens junctions: implications in the control of vascular permeability and angiogenesis. J Clin Invest 98:1949–1953

    PubMed  CAS  Google Scholar 

  • Dejana E, Bazzoni G, Lampugnani MG (1999) Vascular endothelial (VE)-cadherin: only an intercellular glue? Exp Cell Res 252:13–19

    Article  PubMed  CAS  Google Scholar 

  • Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–605

    Article  PubMed  CAS  Google Scholar 

  • Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft FC, Schedl A, Haller H, Kurzchalia TV (2001) Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293:2449–2452

    Article  PubMed  CAS  Google Scholar 

  • Drazner MH, Peppel KC, Dyer S, Grant AO, Koch WJ, Lefkowitz RJ (1997) Potentiation of beta-adrenergic signaling by adenoviral-mediated gene transfer in adult rabbit ventricular myocytes. J Clin Invest 99:288–296

    PubMed  CAS  Google Scholar 

  • Dudek SM, Garcia JGN (2001) Cytoskeletal regulation of pulmonary vascular permeability. J Appl Physiol 91:1487–1500

    PubMed  CAS  Google Scholar 

  • Dvorak AM, Feng D (2001) The vesiculo-vacuolar organelle (VVO). A new endothelial cell permeability organelle. J Histochem Cytochem 49:419–432

    PubMed  CAS  Google Scholar 

  • Dvorak HF, Nagy JA, Feng D, Brown LF, Dvorak AM (1995) Vascular permeability factor/vascular endothelial growth factor, microvascular permeability, and angiogenesis. Am J Pathol 146:1029–1039

    PubMed  CAS  Google Scholar 

  • Ellis CA, Malik AB, Hamm H, Sandoval R, Voyno-Yasenetskaya T, Gilchrist A, Tiruppathi C (1999) Thrombin induces PAR-1 gene expression in endothelial cells via activation of Gi-linked Ras/mitogen-activated protein kinase pathway. J Biol Chem 274:13718–13727

    Article  PubMed  CAS  Google Scholar 

  • Fan J, Frey RS, Rahman A, Malik AB (2002) Role of neutrophil NADPH oxidase in the mechanism of tumor necrosis factor-alpha-induced NF-kappa B activation and intercellular adhesion molecule-1 expression in endothelial cells. J Biol Chem 277:3404–3411

    Article  PubMed  CAS  Google Scholar 

  • Fan J, Frey RS, Malik AB (2003) TLR4 signaling induces TLR2 expression in endothelial cells via neutrophil NADPH oxidase. J Clin Invest 112:1234–1243

    Article  PubMed  CAS  Google Scholar 

  • Fasolato C, Hoth M, Penner R (1993) A GTP-dependent step in the activation mechanism of capacitative calcium influx. J Biol Chem 268:20737–20740

    PubMed  CAS  Google Scholar 

  • Fernandez I, Ying Y, Albanesi J, Anderson RG (2002) Mechanism of caveolin filament assembly. Proc Natl Acad Sci USA 99:11193–11198

    Article  PubMed  CAS  Google Scholar 

  • Flick MR, Matthay MA (2000) Pulmonary edema and acute lung. In: Murray JF, Nadel JA (eds) Textbook of respiratory medicine, 3rd edn. WB Saunders Comp, Philadelphia, pp 1575–1629

    Google Scholar 

  • Fujimoto T (1993) Calcium pump of the plasma membrane is localized in caveolae. J Cell Biol 120:1147–1157

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto T, Nakade S, Miyawaki A, Mikoshiba K, Ogawa K (1992) Localization of inositol 1,4,5-trisphosphate receptor-like protein in plasmalemmal caveolae. J Cell Biol 119:1507–1513

    Article  PubMed  Google Scholar 

  • Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC (1999) Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399:597–601

    Article  PubMed  CAS  Google Scholar 

  • Fulton D, Gratton JP, Sessa WC (2001) Post-translational control of endothelial nitric oxide synthase: why isn’t calcium/calmodulin enough? J Pharmacol Exp Ther 299:818–824

    PubMed  CAS  Google Scholar 

  • Gamble JR, Drew J, Trezise L, Underwood A, Parsons M, Kasminkas L, Rudge J, Yancopoulos G, Vadas MA (2000) Angiopoietin-1 is an antipermeability and anti-inflammatory agent in vitro and targets cell junctions. Circ Res 87:603–607

    PubMed  CAS  Google Scholar 

  • Gao X, Kouklis P, Xu N, Minshall RD, Sandoval R, Vogel SM, Malik AB (2000) Reversibility of increased microvessel permeability in response to VE-cadherin disassembly. Am J Physiol Lung Cell Mol Physiol 279:L1218–L1225

    PubMed  CAS  Google Scholar 

  • Garcia JG, Verin AD, Schaphorst KL (1996) Regulation of thrombin-mediated endothelial cell contraction and permeability. Semin Thromb Hemost 22:309–315

    PubMed  CAS  Google Scholar 

  • Garcia JGN, Davis HW, Patterson CE (1995) Regulation of endothelial gap formation and barrier dysfunction: role of myosin light chain phosphorylation. J Cell Physiol 163:510–522

    Article  PubMed  CAS  Google Scholar 

  • Garcia JGN, Liu F, Verin AD, Birukova A, Dechert MA, Gerthoffer WT, Bamburg JR, English D (2001) Sphingosine 1-phosphate promotes endothelial cell barrier integrity by Edgdependent cytoskeletal rearrangement. J Clin Invest 108:689–701

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Cardena G, Martasek P, Masters BS, Skidd PM, Couet J, Li S, Lisanti MP, Sessa WC (1997) Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the NOS caveolin binding domain in vivo. J Biol Chem 272:25437–25440

    Article  PubMed  CAS  Google Scholar 

  • Ghinea N, Fixman A, Alexandru D, Popov D, Hasu M, Ghitescu I, Eskenasy M, Simionescu M, Simionescu N (1988) Identification of albumin binding proteins in capillary endothelial cells. J Cell Biol 107:231–239

    Article  PubMed  CAS  Google Scholar 

  • Ghinea N, Eskenasy M, Simionescu M, Simionescu N (1989) Endothelial albumin binding proteins are membrane-associated components exposed on the cell surface. J Biol Chem 264:4755–4758

    PubMed  CAS  Google Scholar 

  • Ghitescu L, Fixman A, Simionescu M, Simionescu N (1986) Specific binding sites for albumin restricted to plasmalemmal vesicles of continuous capillary endothelium: receptor mediated transcytosis. J Cell Biol 102:1304–1311

    Article  PubMed  CAS  Google Scholar 

  • Ghosh M, Peterson YK, Lanier SM, Smrcka AV (2003) Receptor-and nucleotide exchange-independent mechanisms for promoting G protein subunit dissociation. J Biol Chem 278:34747–34750

    Article  PubMed  CAS  Google Scholar 

  • Gilbert A, Paccaud JP, Foti M, Porcheron G, Balz J, Carpentier JL (1999) Direct demonstration of the endocytic function of caveolae by a cell-free assay. J Cell Sci 112:1101–1110

    PubMed  CAS  Google Scholar 

  • Glenney JR Jr (1989) Tyrosine phosphorylation of a 22-kDa protein is correlated with transformation by Rous sarcoma virus. J Biol Chem 264:20163–20166

    PubMed  CAS  Google Scholar 

  • Goldberg RI, Smith RM, Jarett L (1987) Insulin and alpha 2-macroglobulin-methylamine undergo endocytosis by different mechanisms in rat adipocytes. I. Comparison of cell surface events. J Cell Physiol 133:203–212

    Article  PubMed  CAS  Google Scholar 

  • Goodman RB, Pugin J, Lee JS, Matthay MA(2003)Cytokine-mediated inflammation in acute lung injury. Cytokine Growth Factor Rev 14:523–535

    Article  PubMed  CAS  Google Scholar 

  • Goubaeva F, Ghosh M, Malik S, Yang J, Hinkle PM, Griendling KK, Neubig RR, Smrcka AV (2003) Stimulation of cellular signaling and G protein subunit dissociation by G protein betagamma subunit-binding peptides. J Biol Chem 278:19634–19641

    Article  PubMed  CAS  Google Scholar 

  • Gratton JP, Bernatchez P, Sessa WC (2004) Caveolae and caveolins in the cardiovascular system. Circ Res 94:1408–1417

    Article  PubMed  CAS  Google Scholar 

  • Greitz D (2002) On the active vascular absorption of plasma proteins from tissue: rethinking the role of the lymphatic system. Med Hypotheses 59:696–702

    Article  PubMed  CAS  Google Scholar 

  • Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514

    Article  PubMed  CAS  Google Scholar 

  • Harbeck B, Huttelmaier S, Schluter K, Jockusch BM, Illenberger S (2000) Phosphorylation of the vasodilator-stimulated phosphoprotein regulates its interaction with actin. J Biol Chem 275:30817–30825

    Article  PubMed  CAS  Google Scholar 

  • Henley JR, Cao H, McNiven MA (1999) Participation of dynamin in the biogenesis of cytoplasmic vesicles. FASEB J 13:S243–S247

    PubMed  CAS  Google Scholar 

  • Holinstat M, Mehta D, Kozasa T, Minshall RD, Malik AB (2003) Protein kinase Calphainduced p115RhoGEF phosphorylation signals endothelial cytoskeletal rearrangement. J Biol Chem 278:28793–28798

    Article  PubMed  CAS  Google Scholar 

  • Horgan MJ, Ge M, Gu J, Rothlein R, Malik AB (1991) Role of ICAM-1 in neutrophil-mediated lung vascular injury following reperfusion. Am J Physiol Heart Circ Physiol 261:H1578–H1584

    CAS  Google Scholar 

  • Issekutz AC, Rowter D, Springer TA (1999) Role of ICAM-1 and ICAM-2 and alternate CD11/CD18 ligands in neutrophil transendothelial migration. J Leukoc Biol 65:117–126

    PubMed  CAS  Google Scholar 

  • Isshiki M, Ying Y, Fujita T, Anderson RGW (2002) A molecular sensor detects signal transduction from caveolae in living cells. J Biol Chem 277:43389–43398

    Article  PubMed  CAS  Google Scholar 

  • John TA, Vogel SM, Tiruppathi C, Malik AB, Minshall RD (2003) Quantitative analysis of albumin uptake and transport in the rat microvessel endothelial monolayer. Am J Physiol Lung Cell Mol Physiol 284:L187–L196

    PubMed  CAS  Google Scholar 

  • Jorgenson AO, Shen AC, Arnold W, Leung AT, Campbell KP (1989) Subcellular distribution of the 1,4-dihydropyridine receptor in rabbit skeletal muscle in situ: an immunofluorescence and immunocolloidal gold-labeling study. J Cell Biol 109:135–147

    Article  Google Scholar 

  • Ju H, Zou R, Venema VJ, Venema RC (1997) Direct interaction of endothelial nitric-oxide synthase and caveolin-1 inhibits synthase activity. J Biol Chem 272:18522–18525

    Article  PubMed  CAS  Google Scholar 

  • Keller P, Simons K (1998) Cholesterol is required for surface transport of influenza virus hemagglutinin. J Cell Biol 140:1357–1367

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Ahn S, Guo R, Daaka Y (2003) Regulation of epidermal growth factor receptor internalization by G protein-coupled receptors. Biochemistry 42:2887–2894

    Article  PubMed  CAS  Google Scholar 

  • Kim YN, Bertics PJ (2002) The endocytosis-linked protein dynamin associates with caveolin-1 and is tyrosine phosphorylated in response to the activation of a noninternalizing epidermal growth factor receptor mutant. Endocrinology 143:1726–1731

    Article  PubMed  CAS  Google Scholar 

  • King GL, Johnson SM (1984) Receptor-mediated transport of insulin across endothelial cells. Science 227:1583–1586

    Article  Google Scholar 

  • Kirkham M, Fujita A, Chadda R, Nixon SJ, Kurzchalia TV, Sharma DK, Pagano RE, Hancock JF, Mayor S, Parton RG (2005) Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles. J Cell Biol 168:465–476

    Article  PubMed  CAS  Google Scholar 

  • Kouklis P, Konstantoulaki M, Malik AB (2003) VE-cadherin-induced Cdc42 signaling regulates formation of membrane protrusions in endothelial cells. J Biol Chem 278:16230–16236

    Article  PubMed  CAS  Google Scholar 

  • Kouklis P, Konstantoulaki M, Vogel S, Broman M, Malik AB (2004) Cdc42 regulates the restoration of endothelial barrier function. Circ Res 94:159–166

    Article  PubMed  CAS  Google Scholar 

  • Krueger EW, Orth JD, Cao H, McNiven MA (2003) A dynamin-cortactin-Arp2/3 complex mediates actin reorganization in growth factor-stimulated cells. Mol Biol Cell 14:1085–1096

    Article  PubMed  CAS  Google Scholar 

  • Kubes P (1995) Nitric oxide affects microvascular permeability in the intact and inflamed vasculature. Microcirculation 2:235–244

    PubMed  CAS  Google Scholar 

  • Kuebler WM, Ying X, Singh B, Issekutz AC, Bhattacharya J (1999) Pressure is proinflammatory in lung venular capillaries. J Clin Invest 104:495–502

    PubMed  CAS  Google Scholar 

  • Kuebler WM, Ying X, Bhattacharya J (2002) Pressure-induced endothelial Ca(2+) oscillations in lung capillaries. Am J Physiol Lung Cell Mol Physiol 282:L917–L923

    PubMed  CAS  Google Scholar 

  • Kurzchalia TV, Dupree P, Parton RG, Kellner R, Virta H, Lehnert M, Simons K (1992) VIP21, a 21-kDa membrane protein is an integral component of trans-Golgi-network-derived transport vesicles. J Cell Biol 118:1003–1014

    Article  PubMed  CAS  Google Scholar 

  • Lampugnani MG, Corada M, Caveda L, Breviario F, Ayalon O, Geiger B, Dejana E (1995) The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, beta-catenin, and alpha-catenin with vascular cadherin (VE-cadherin). J Cell Biol 129:203–217

    Article  PubMed  CAS  Google Scholar 

  • Li S, Couet J, Lisanti MP (1996a) Src tyrosine kinases, Gα subunits, and H-Ras share a common membrane-anchored protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J Biol Chem 271:29182–29190

    Article  PubMed  CAS  Google Scholar 

  • Li S, Seitz R, Lisanti MP (1996b) Phosphorylation of caveolin by Src tyrosine kinases. The α-isoform of caveolin is selectively phosphorylated by vSrc in vivo. J Biol Chem 271:3863–3868

    Article  PubMed  CAS  Google Scholar 

  • Lin HC, Duncan J, Kozasa T, Gilman AG (1998) Sequestration of the G protein beta gamma subunit complex inhibits receptor-mediated endocytosis. Proc Natl Acad Sci USA 95:5057–5060

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Verin AD, Borbiev T, Garcia JG (2001) Role of cAMP-dependent protein kinase A activity in endothelial cell cytoskeleton rearrangement. Am J Physiol Lung Cell Mol Physiol 280:L1309–L1317

    PubMed  CAS  Google Scholar 

  • Liu P, Anderson RG (1999) Spatial organization of EGF receptor transmodulation by PDGF. Biochem Biophys Res Commun 261:695–700

    Article  PubMed  CAS  Google Scholar 

  • Liu P, Rudick M, Anderson RG (2002) Multiple functions of caveolin-1. J Biol Chem 277:41295–41298

    Article  PubMed  CAS  Google Scholar 

  • Lo SK, Everitt J, Gu J, Malik AB (1992) Tumor necrosis factor mediates experimental pulmonary edema by ICAM-1 and CD18-dependent mechanisms. J Clin Invest 89:981–988

    PubMed  CAS  Google Scholar 

  • Lo SK, Janakidevi K, Lai L, Malik AB (1993) Hydrogen peroxide-induced increase in endothelial adhesiveness is dependent on ICAM-1 activation. Am J Physiol 264:L406–L412

    PubMed  CAS  Google Scholar 

  • Lockwich TP, Liu X, Singh BB, Jadlowiec J, Weiland S, Ambudkar IS (2000) Assembly of Trp1 in a signaling complex associated with caveolin-scaffolding lipid raft domains. J Biol Chem 275:11934–11942

    Article  PubMed  CAS  Google Scholar 

  • Lum H, Malik AB (1994) Regulation of vascular endothelial barrier function. Am J Physiol Lung Cell Mol Physiol 267:L223–L241

    CAS  Google Scholar 

  • Lum H, Del Vecchio PJ, Schneider AS, Goligorsky MS, Malik AB (1989) Calcium dependence of the thrombin-induced increase in endothelial albumin permeability. J Appl Physiol 66:1471–1476

    Article  PubMed  CAS  Google Scholar 

  • Lum H, Aschner JL, Phillips PG, Fletcher PW, Malik AB (1992) Time course of thrombin-induced increase in endothelial permeability: relationship to Cai 2+ and inositol polyphosphates. Am J Physiol Lung Cell Mol Physiol 263:L219–L225

    CAS  Google Scholar 

  • Lum H, Andersen TT, Siflinger-Birnboim A, Tiruppathi C, Goligorsky MS, Fenton JW 2nd, Malik AB (1993) Thrombin receptor peptide inhibits thrombin-induced increase in endothelial permeability by receptor desensitization. J Cell Biol 120:1491–1499

    Article  PubMed  CAS  Google Scholar 

  • Lum H, Jaffe HA, Schulz IT, Masood A, RayChaudhury A, Green RD (1999) Expression of PKA inhibitor (PKI) gene abolishes cAMP-mediated protection to endothelial barrier dysfunction. Am J Physiol 277:C580–C588

    PubMed  CAS  Google Scholar 

  • Lynch JJ, Ferro TJ, Blumenstock FA, Brockenauer AM, Malik AB (1990) Increased endothelial albumin permeability mediated by protein kinase C activation. J Clin Invest 85:1991–1998

    Article  PubMed  CAS  Google Scholar 

  • Malik AB (1993) Endothelial cell interactions and integrins. New Horiz 1:37–51

    PubMed  CAS  Google Scholar 

  • Malik AB, Vogel SM, Minshall RD, Tiruppathi C (2000) Pulmonary circulationand regulation of fluid balance. In: Murray JF, Nadel JA (eds) Textbook of respiratory medicine, 3rd edn. WB Saunders, Philadelphia, pp 119–154

    Google Scholar 

  • Mastick CC, Brady MJ, Saltiel AR (1995) Insulin stimulates the tyrosine phosphorylation of caveolin. J Cell Biol 129:1523–1531

    Article  PubMed  CAS  Google Scholar 

  • McNiven MA, Kim L, Krueger EW, Orth JD, Cao H, Wong TW (2000) Regulated interactions between dynamin and the actin-binding protein cortactin modulate cell shape. J Cell Biol 151:187–198

    Article  PubMed  CAS  Google Scholar 

  • Mehta D, Rahman A, Malik AB (2001) Protein Kinase C-α signals Rho-guanine nucleotide dissociation inhibitor phosphorylation and Rho activation and regulates the endothelial cell barrier function. J Biol Chem 276:22614–22620

    Article  PubMed  CAS  Google Scholar 

  • Mehta D, Ahmed GU, Paria B, Holinstat M, Voyno-Yasenetskaya T, Tiruppathi C, Minshall RD, Malik AB (2003) RhoA interaction with Inositol 1,4,5-triphosphate receptor and transient receptor potential channel-1 regulates Ca2+ entry. Role in signaling increased endothelial permeability. J Biol Chem 278:33492–33500

    Article  PubMed  CAS  Google Scholar 

  • Mehta D, Bhattacharya J, Matthay MA, Malik AB (2004) Integrated control of lung fluid balance. Am J Physiol Lung Cell Mol Physiol 287:L1081–L1090

    Article  PubMed  CAS  Google Scholar 

  • Michel CC, Curry FE (1999) Microvascular permeability. Physiol Rev 79:703–761

    PubMed  CAS  Google Scholar 

  • Michel JB, Feron O, Sacks D, Michel T (1997) Reciprocal regulation of endothelial nitricoxide synthase by Ca2+-calmodulin and caveolin. J Biol Chem 272:15583–15586

    Article  PubMed  CAS  Google Scholar 

  • Milici AJ, Watrous NE, Stukenbrok H, Palade GE (1987) Transcytosis of albumin in capillary endothelium. J Cell Biol 105:2603–2612

    Article  PubMed  CAS  Google Scholar 

  • Mineo C, Anderson RG (2001) Potocytosis. Robert Feulgen Lecture. Histochem Cell Biol 116:109–118

    PubMed  CAS  Google Scholar 

  • Minnear FL, DeMichele MA, Moon DG, Rieder CL, Fenton JW 2nd (1989) Isoproterenol reduces thrombin-induced pulmonary endothelial permeability in vitro. Am J Physiol 257:H1613–H1623

    PubMed  CAS  Google Scholar 

  • Minshall RD, Niles WD, Tiruppathi C, Vogel SM, Gilchrist A, Hamm HE, Malik AB (2000) Endothelial cell-surface gp60 activates vesicle formation and trafficking viaG(i)-coupled Src kinase signaling pathway. J Cell Biol 150:1057–1069

    Article  PubMed  CAS  Google Scholar 

  • Minshall RD, Tiruppathi C, Vogel SM, Malik AB (2002) Vesicle formation and trafficking and its role in regulation of endothelial barrier function. Histochem Cell Biol 117:105–112

    Article  PubMed  CAS  Google Scholar 

  • Minshall RD, Sessa WC, Stan RV, Anderson RGW, Malik AB (2003) Caveolin regulation of endothelial function. Am J Physiol Lung Cell Mol Physiol 285:L1179–L1183

    PubMed  CAS  Google Scholar 

  • Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    PubMed  CAS  Google Scholar 

  • Moy AB, Van Engelenhoven J, Bodmer J, Kamath J, Keese C, Giaever C, Shasby S, Shasby DM (1996) Histamine and thrombin modulate endothelial focal adhesion through centripetal and centrifugal forces. J Clin Invest 97:1020–1027

    PubMed  CAS  Google Scholar 

  • Mundy DI, Machleidt T, Ying YS, Anderson RG, Bloom GS (2002) Dual control of caveolar membrane traffic by microtubules and the actin cytoskeleton. J Cell Sci 115:4327–4339

    Article  PubMed  CAS  Google Scholar 

  • Murata M, Peranen J, Schreiner R, Wieland F, Kurzchalia TV, Simons K (1995) VIP21/caveolin is a cholesterol-binding protein. Proc Natl Acad Sci USA 92:10339–10343

    Article  PubMed  CAS  Google Scholar 

  • Murthy KS, Makhlouf GM (2000) Heterologous desensitization mediated by G protein-specific binding to caveolin. J Biol Chem 275:30211–30219

    Article  PubMed  CAS  Google Scholar 

  • Nabi IR, Le PU (2003) Caveolae/raft-dependent endocytosis. J Cell Biol 161:673–677

    Article  PubMed  CAS  Google Scholar 

  • Niles WD, Malik AB (1999) Endocytosis and exocytosis events regulate vesicle traffic in endothelial cells. J Membr Biol 167:85–101

    Article  PubMed  CAS  Google Scholar 

  • Oh P, McIntosh DP, Schnitzer JE (1998) Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J Cell Biol 141:101–114

    Article  PubMed  CAS  Google Scholar 

  • Okamoto T, Schlegel A, Scherer PE, Lisanti MP (1998) Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J Biol Chem 273:5419–5422

    Article  PubMed  CAS  Google Scholar 

  • Parton RG, Joggerst B, Simons K (1994) Regulated internalization of caveolae. J Cell Biol 127:1199–1215

    Article  PubMed  CAS  Google Scholar 

  • Patterson CE, Davis HW, Schaphorst KL, Garcia JG (1994)Mechanisms of cholera toxin prevention of thrombin-and PMA-induced endothelial cell barrier dysfunction. Microvasc Res 48:212–235

    Article  PubMed  CAS  Google Scholar 

  • Patterson CE, Lum H, Schaphorst KL, Verin AD, Garcia JG (2000) Regulation of endothelial barrier function by the cAMP-dependent protein kinase. Endothelium 7:287–308

    PubMed  CAS  Google Scholar 

  • Pelkmans L, Puntener D, Helenius A (2002) Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 296:535–539

    Article  PubMed  CAS  Google Scholar 

  • Predescu D, Palade GE (1993) Plasmalemmal vesicles represent the large pore system of continuous microvascular endothelium. Am J Physiol 265:H725–H733

    PubMed  CAS  Google Scholar 

  • Predescu D, Horvat R, Predescu S, Palade GE (1994) Transcytosis in the continuous endothelium of the myocardial microvasculature is inhibited by N-ethylmaleimide. Proc Natl Acad Sci USA 91:3014–3018

    Article  PubMed  CAS  Google Scholar 

  • Predescu D, Predescu S, Malik AB (2002) Transport of nitrated albumin across continuous vascular endothelium. Proc Natl Acad Sci USA 99:13932–13937

    Article  PubMed  CAS  Google Scholar 

  • Predescu D, Vogel SM, Malik AB (2004) Functional and morphological studies of protein transcytosis in continuous endothelia. Am J Physiol Lung Cell Mol Physiol 287:L895–901

    Article  PubMed  CAS  Google Scholar 

  • Predescu SA, Predescu DN, Palade GE (1997) Plasmalemmal vesicles functionas transcytotic carriers for small proteins in the continuous microvascular endothelium. Am J Physiol 272:H937–H949

    PubMed  CAS  Google Scholar 

  • Predescu SA, Predescu DN, Palade GE (2001) Endothelial transcytotic machinery involves supramolecular protein-lipid complexes. Mol Biol Cell 12:1019–1033

    PubMed  CAS  Google Scholar 

  • Rabiet MJ, Plantier L, Rival Y, Genoux Y, Lampugnani MG, Dejana E (1996) Thrombin induced increase in endothelial permeability is associated with changes in cell-to-cell junction organization. Arterioscler Thromb Vasc Biol 16:488–496

    PubMed  CAS  Google Scholar 

  • Rahman A, Bando M, Kefer J, Anwar KN, Malik AB (1999) Protein kinase C-activated oxidant generation in endothelial cells signals intercellular adhesion molecule-1 gene transcription. Mol Pharmacol 55:575–583

    PubMed  CAS  Google Scholar 

  • Razani B, Engelman JA, Wang XB, Schubert W, Zhang XL, Marks CB, Macaluso F, Russell RG, Li M, Pestell RG, Di Vizio D, Hou H Jr, Knietz B, Lagaud G, Christ GJ, Edelmann W, Lisanti MP (2001) Caveolin-1 null mice are viable, but show evidence of hyper-proliferative and vascular abnormalities. J Biol Chem 276:38121–38138

    Article  PubMed  CAS  Google Scholar 

  • Rizzo V, Morton C, DePaola N, Schnitzer JE, Davies PF (2003) Recruitment of endothelial caveolae into mechanotransduction pathways by flow conditioning in vitro. Am J Physiol Heart Circ Physiol 285:H1720–H1729

    PubMed  CAS  Google Scholar 

  • Rosado JA, Sage SO (2000) The actin cytoskeleton in store-mediated calciumentry. J Physiol 526:221–229

    Article  PubMed  CAS  Google Scholar 

  • Rothberg KG, Ying YS, Kamen BA, Anderson RG (1990) Cholesterol controls the clustering of the glycophospholipid-anchored membrane receptor for 5-methyltetrahydrofolate. J Cell Biol 111:2931–2938

    Article  PubMed  CAS  Google Scholar 

  • Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, Anderson RG (1992) Caveolin, a protein component of caveolae membrane coats. Cell 68:673–682

    Article  PubMed  CAS  Google Scholar 

  • Sandoval R, Malik AB, Minshall RD, Kouklis P, Ellis CA, Tiruppathi C (2001) Ca2+ signaling and PKCα activate increased endothelial permeability by disassembly of VE-cadherin junctions. J Physiol (Lond) 533:433–445

    Article  PubMed  CAS  Google Scholar 

  • Schnitzer JE (1992) Gp60 is an albumin-binding glycoprotein expressed by continuous endothelium involved in albumin transcytosis. Am J Physiol 262:H246–H254

    PubMed  CAS  Google Scholar 

  • Schnitzer JE, Bravo J (1993) High affinity binding, endocytosis, and degradation of con-formationally modified albumins. Potential role of gp30 and gp18 as novel scavenger receptors. J Biol Chem 268:7562–7570

    PubMed  CAS  Google Scholar 

  • Schnitzer JE, Oh P (1994) Albondin-mediated capillary permeability to albumin. Differential role of receptors in endothelial transcytosis and endocytosis of native and modified albumins. J Biol Chem 269:6072–6082

    PubMed  CAS  Google Scholar 

  • Schnitzer JE, Carley WW, Palade GE (1988) Albumin interacts specifically with a 60-kDa microvascular endothelial glycoprotein. Proc Natl Acad Sci USA 85:6773–6777

    Article  PubMed  CAS  Google Scholar 

  • Schnitzer JE, Sung A, Horvat R, Bravo J (1992) Preferential interaction of albumin-binding proteins, gp30 and gp18, with conformationally modified albumins. Presence in many cells and tissues with a possible role in catabolism. J Biol Chem 267:24544–24553

    PubMed  CAS  Google Scholar 

  • Schnitzer JE, Oh P, Pinney E, Allard J (1994) Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J Cell Biol 127:1217–1232

    Article  PubMed  CAS  Google Scholar 

  • Schnitzer JE, Oh P, McIntosh DP (1996) Role of GTP hydrolysis in fission of caveolae directly from plasma membranes. Science 274:239–242

    Article  PubMed  CAS  Google Scholar 

  • Schubert W, Frank PG, Woodman SE, Hyogo H, Cohen DE, Chow CW, Lisanti MP (2002) Microvascular hyperpermeability in caveolin-1 (-/-) knock-out mice. Treatment with a specific nitric-oxide synthase inhibitor, L-name, restores normal microvascular permeability in Cav-1 null mice. J Biol Chem 277:40091–40098

    Article  PubMed  CAS  Google Scholar 

  • Shajahan AN, Timblin BK, Sandoval RS, Malik AB, Minshall RD (2004a) Src phosphorylation of dynamin-2 regulates caveolae-mediated endocytosis and transcytosis in endothelial cells. J Biol Chem 279:20392–20400

    Article  PubMed  CAS  Google Scholar 

  • Shajahan AN, Tiruppathi C, Smrcka AV, Malik AB, Minshall RD (2004b) Gβγ activation of Src induces caveolae-mediated endocytosis in endothelial cells. J Biol Chem 279:48055–48062

    Article  PubMed  CAS  Google Scholar 

  • Shajahan AN, Sverdlov M, Hirth AM, Timblin BK, Tiruppathi C, Malik AB, Minshall RD (2004c) Src-dependent caveolin-1 phosphorylation destabilizes caveolin-1 oligomers and activates vesicle fission in endothelial cells (abstract). Mol Biol Cell 15:330a (1262)

    Google Scholar 

  • Sharma DK, Brown JC, Choudhury A, Peterson TE, Holicky E, Marks DL, Simari R, Parton RG, Pagano RE (2004) Selective stimulation of caveolar endocytosis by glycosphingolipids and cholesterol. Mol Biol Cell 15:3114–3122

    Article  PubMed  CAS  Google Scholar 

  • Siflinger-Birnboim A, Schnitzer J, Lum H, Blumenstock FA, Shen CP, Del Vecchio PJ, Malik AB (1991) Lectin binding to gp60 decreases specific albumin binding and transport in pulmonary artery endothelial monolayers. J Cell Physiol 149:575–584

    Article  PubMed  CAS  Google Scholar 

  • Simionescu M, Simionescu N (1991) Endothelial transport of macromolecules: transcytosis and endocytosis. Cell Biol Rev 25:1–80

    PubMed  CAS  Google Scholar 

  • Singh RD, Puri V, Valiyaveettil JT, Marks DL, Bittman R, Pagano RE (2003) Selective caveolin-1-dependent endocytosis of glycosphingolipids. Mol Biol Cell 14:3254–3265

    Article  PubMed  CAS  Google Scholar 

  • Sivasankar S, Gumbiner B, Leckband D (2001) Molecular mechanism of cadherin binding. Biophys J 80:1758–1768

    Article  PubMed  CAS  Google Scholar 

  • Skidgel RA, Gao XP, Brovkovych V, Rahman A, Jho D, Predescu S, Standiford TJ, Malik AB (2002) Nitric oxide stimulates macrophage inflammatory protein-2 expression in sepsis. J Immunol 169:2093–2101

    PubMed  CAS  Google Scholar 

  • Smart EJ, Ying Y, Donzell WC, Anderson RG (1996) A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane. J Biol Chem 271:29427–29435

    Article  PubMed  CAS  Google Scholar 

  • Song KS, Sargiacomo M, Galbiati F, Parenti M, Lisanti MP (1997) Targeting of a G alpha subunit (Gi1 alpha) and c-Src tyrosine kinase to caveolae membranes: clarifying the role of N-myristoylation. Cell Mol Biol 43:293–303

    PubMed  CAS  Google Scholar 

  • Spiegel S, Merrill AH Jr (1996) Sphingolipid metabolism and cell growth regulation. FASEB J 10:1388–1397

    PubMed  CAS  Google Scholar 

  • Stelzner TJ, Weil JV, O’Brien RF (1989) Role of cyclic adenosine monophosphate in the induction of endothelial barrier properties. J Cell Physiol 139:157–166

    Article  PubMed  CAS  Google Scholar 

  • Sugi H, Suzuki S, Daimon T (1982) Intracellular calcium translocation during contraction in vertebrate and invertebrate smooth muscles as studied by the pyroantimonate method. Can J Physiol Pharmacol 60:576–587

    PubMed  CAS  Google Scholar 

  • Suri C, Jones PF, Patan S, Bartunka S, Maisonpierre PC, Davis S, Sato TN, Yancopolouos GD (1996) Requisite role of angiopoietin-1, a ligand for the Tie-2 receptor, during embryonic angiogenesis. Cell 87:1171–1180

    Article  PubMed  CAS  Google Scholar 

  • Taylor AE (1981) Capillary fluid filtration. Starling’s forces and lymph flow. Circ Res 49:557–575

    PubMed  CAS  Google Scholar 

  • Taylor AE, Parker JC (1985) Pulmonary interstitial spaces and lymphatics. In: Fishman AP, Fisher AB (eds) Handbook of physiology, vol 1. American Physiological Society, Bethesda, pp 167–230

    Google Scholar 

  • Thurston G, Suri C, Smith K, McClain J, Sato TN, Yancopoulos GD, McDonald DM (1999) Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 286:2511–2514

    Article  PubMed  CAS  Google Scholar 

  • Thurston G, Rudge JS, Ioffe E, Zhou H, Ross L, Croll SD, Glazer N, Holash J, McDonald DM, Yancopoulos GD (2000) Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 6:460–463

    Article  PubMed  CAS  Google Scholar 

  • Tiruppathi C, Malik AB, Del Vecchio PJ, Keese CR, Giaever I (1992) Electrical method for detection of endothelial cell shape change in real time: assessment of endothelial barrier function. Proc Natl Acad Sci USA 89:7919–7923

    Article  PubMed  CAS  Google Scholar 

  • Tiruppathi C, Finnegan A, Malik AB (1996) Isolation and characterization of a cell surface albumin binding protein from vascular endothelial cells. Proc Natl Acad Sci USA 93:250–254

    Article  PubMed  CAS  Google Scholar 

  • Tiruppathi C, Song W, Bergenfeldt M, Sass P, Malik AB (1997) Gp60 activation mediates albumin transcytosis in endothelial cells by a tyrosine kinase-dependent pathway. J Biol Chem 272:25968–25975

    Article  PubMed  CAS  Google Scholar 

  • Tiruppathi C, Naqvi T, Sandoval R, Mehta D, Malik AB (2001) Synergistic effects of tumor necrosis factor-alpha and thrombin in increasing endothelial permeability. Am J Physiol Lung Cell Mol Physiol 281:L958–L968

    PubMed  CAS  Google Scholar 

  • Tiruppathi C, Freichel M, Vogel SM, Paria BC, Mehta D, Flockerzi V, Malik AB (2002) Impairment of store-operated Ca2+ entry in TRPC4(-/-) mice interferes with increase in lung microvascular permeability. Circ Res 91:70–76

    Article  PubMed  CAS  Google Scholar 

  • Tiruppathi C, Minshall RD, Paria BC, Vogel SM, Malik AB (2003) Role of Ca2+ signaling in the regulation of endothelial permeability. Vascul Pharmacol 39:173–185

    Article  CAS  Google Scholar 

  • Tiruppathi C, Naqvi T, Wu Y, Vogel SM, Minshall RD, Malik AB (2004) Albumin-mediates the transcytosis of myeloperoxidase by means of caveolae in endothelial cells. Proc Natl Acad Sci USA 101:7699–7704

    Article  PubMed  CAS  Google Scholar 

  • Tsao PS, Buitrago R, Chan JR, Cooke JP (1996) Fluid flow inhibits endothelial adhesiveness. Nitric oxide and transcriptional regulation of VCAM-1. Circulation 94:1682–1689

    PubMed  CAS  Google Scholar 

  • Tuma PL, Hubbard AL (2003) Transcytosis: crossing cellular barriers. Physiol Rev 83:871–932

    PubMed  CAS  Google Scholar 

  • van Deurs B, Roepstorff K, Hommelgaard AM, Sandvig K (2003) Caveolae: anchored, multifunctional platforms in the lipid ocean. Trends Cell Biol 13:92–100

    Article  PubMed  Google Scholar 

  • van Nieuw Amerongen GP, Draijer R, Vermeer MA, van Hinsbergh VWM (1998) Transient and prolonged increase in endothelial permeability induced by histamine and thrombin: role of protein kinases, calcium, and RhoA. Circ Res 83:1115–1123

    PubMed  Google Scholar 

  • van Nieuw Amerongen GP, Delft SV, Vermeer MA, Collard JG, van Hinsbergh VWM (2000) Activation of RhoA by thrombin in endothelial hyperpermeability. Role of rho kinase and protein tyrosine kinases. Circ Res 87:335–340

    PubMed  Google Scholar 

  • Vasioukhin V, Bauer C, Yin M, Fuchs E (2000) Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Cell 100:209–219

    Article  PubMed  CAS  Google Scholar 

  • Vogel SM, Gao X, Mehta D, Ye RD, John TA, Andrade-Gordon P, Tiruppathi C, Malik AB (2000) Abrogation of thrombin-induced increase in pulmonary microvascular permeability in PAR-1 knockout mice. Physiol Genomics 4:137–145

    PubMed  CAS  Google Scholar 

  • Vogel SM, Minshall RD, Pilipovic M, Tiruppathi C, Malik AB (2001a) Activation of 60 kDa albumin-binding protein (gp60) stimulates albumin transcytosis in the intact pulmonary microvessel. Am J Physiol 281:1512–1522

    Google Scholar 

  • Vogel SM, Easington CR, Minshall RD, Niles WD, Tiruppathi C, Hollenberg SM, Parrillo JE, Malik AB (2001b) Evidence of transcellular permeability pathway in microvessels. Microvasc Res 61:87–101

    Article  PubMed  CAS  Google Scholar 

  • Vouret-Craviari V, Boquet P, Pouyssegur J, Obberghen-Schilling EV (1998) Regulation of the actin cytoskeleton by thrombin in human endothelial cells: role of Rho proteins in endothelial barrier function. Mol Biol Cell 9:2639–2653

    PubMed  CAS  Google Scholar 

  • Wang D, Wei J, Hsu JC, Lieu MW, Chao TJ, Chen HI (1998) Effects of nitric oxide synthase inhibitors on systemic hypotension, cytokines and inducible nitric oxide synthase expression and lung injury following endotoxin administration in rats. J Biomed Sci 6:28–35

    Article  Google Scholar 

  • Winter MC, Kamath AM, Ries DR, Shasby SS, Chen YT, Shasby M (1999) Histamine alters cadherin-mediated sites of endothelial adhesion. Am J Physiol Lung Cell Mol Physiol 277:L988–995

    CAS  Google Scholar 

  • Wysolmerski RB, Lagunoff D(1990) Involvement of myosin light-chain kinase in endothelial cell retraction. Proc Natl Acad Sci USA 87:16–20

    Article  PubMed  CAS  Google Scholar 

  • Zhao YY, Liu Y, Stan RV, Fan L, Gu Y, Dalton N, Chu PH, Peterson K, Ross J, Chien KR (2002) Defects in caveolin-1 cause dilated cardiomyopathy and pulmonary hypertension in knockout mice. Proc Natl Acad Sci USA 99:11375–11380

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Malik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Minshall, R.D., Malik, A.B. (2006). Transport Across the Endothelium: Regulation of Endothelial Permeability. In: Moncada, S., Higgs, A. (eds) The Vascular Endothelium I. Handbook of Experimental Pharmacology, vol 176/I. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32967-6_10

Download citation

Publish with us

Policies and ethics