Skip to main content

c-Myc, Genome Instability, and Tumorigenesis: The Devil Is in the Details

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 302))

Abstract

The c-myc oncogene acts as a pluripotent modulator of transcription during normal cell growth and proliferation. Deregulated c-myc activity in cancer can lead to excessive activation of its downstream pathways, and may also stimulate changes in gene expression and cellular signaling that are not observed under non-pathological conditions. Under certain conditions, aberrant c-myc activity is associated with the appearance of DNA damage-associated markers and karyotypic abnormalities. In this chapter, we discuss mechanisms by which c-myc may be directly or indirectly associated with the induction of genomic instability. The degree to which c-myc-induced genomic instability influences the initiation or progression of cancer is likely to depend on other factors, which are discussed herein.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bishop JM (1991) Molecular themes in oncogenesis. Cell 64:235–248

    PubMed  CAS  Google Scholar 

  2. Bodmer WF, Tomlinson I (1996) Population genetics of tumours. Ciba Found Symp 197:181–189; discussion 189–193

    PubMed  CAS  Google Scholar 

  3. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    PubMed  CAS  Google Scholar 

  4. Potter M, Melchers F (eds) (1997) Proceedings of the 14th Mechanisms in B-cell Neoplasia meeting. Bethesda, Maryland, 21–23 October 21–23 1996. Current Topics in Microbiology and Immunology, vol 224. Springer-Verlag, Heidelberg Berlin New York, pp 1–291

    Google Scholar 

  5. Watson PH, Singh R, Hole AK (1996) Influence of c-myc on the progression of human breast cancer. In: Gunthert U, Birchmeier B (eds) Current Topics in Microbiology and Immunology, vol 213. Springer-Verlag, Heidelberg Berlin New York, pp 267–283

    Google Scholar 

  6. Mushinski JF, Hanley-Hyde J, Rainey GJ, Kuschak TI, Taylor C, Fluri M, Stevens LM, Henderson DW, Mai S (1999) Myc-induced cyclin D2 genomic instability in murine B cell neoplasms. In: Melchers F, Potter M (eds) Current Topics in Microbiology and Immunology, vol 246. Springer-Verlag, Heidelberg Berlin New York, pp 183–189; discussion 190–192

    Google Scholar 

  7. Eisenman RN (2001) Deconstructing myc. Genes Dev 15:2023–2030

    PubMed  CAS  Google Scholar 

  8. Oster SK, Ho CS, Soucie EL, Penn LZ (2002) The myc oncogene: MarvelouslY complex. Adv Cancer Res 84:81–154

    PubMed  CAS  Google Scholar 

  9. Lutz W, Leon J, Eilers M (2002) Contributions of Myc to tumorigenesis. Biochim Biophys Acta 1602:61–71

    PubMed  CAS  Google Scholar 

  10. Pelengaris S, Khan M, Evan G (2002) c-myc: more than just a matter of life and death. Nat Rev Cancer 2:764–776

    PubMed  CAS  Google Scholar 

  11. Armitage P, Doll R (1954) The age distribution of cancer and multistage theory of carcinogenesis. Br J Cancer 8:1–12

    PubMed  CAS  Google Scholar 

  12. Tomlinson I, Bodmer W (1999) Selection, the mutation rate and cancer: ensuring that the tail does not wag the dog. Nat Med 5:11–12

    PubMed  CAS  Google Scholar 

  13. Loeb KR, Loeb LA (2000) Significance of multiple mutations in cancer. Carcinogenesis 21:379–385

    PubMed  CAS  Google Scholar 

  14. Savelyeva L, Schwab M (2001) Amplification of oncogenes revisited: from expression profiling to clinical application. Cancer Lett 167:115–123

    PubMed  CAS  Google Scholar 

  15. Popescu NC, Zimonjic DB (2002) Chromosome-mediated alterations of the MYC gene in human cancer. J Cell Mol Med 6:151–159

    PubMed  CAS  Google Scholar 

  16. Wright JA, Smith HS, Watt FM, Hancock MC, Hudson DL, Stark GR (1990) DNA amplification is rare in normal human cells. Proc Natl Acad Sci USA 87:1791–1795

    PubMed  CAS  Google Scholar 

  17. Livingstone LR, White A, Sprouse J, Livanos E, Jacks T, Tlsty TD (1992) Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70:923–935

    PubMed  CAS  Google Scholar 

  18. Yin Y, Tainsky MA, Bischoff FZ, Strong LC, Wahl GM (1992) Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell 70:937–948

    PubMed  CAS  Google Scholar 

  19. Lengauer C, Kinzler KW, Vogelstein B (1997) Genetic instability in colorectal cancers. Nature 386:623–627

    PubMed  CAS  Google Scholar 

  20. Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M (1993) Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363:558–561

    PubMed  CAS  Google Scholar 

  21. Thibodeau SN, Bren G, Schaid D (1993) Microsatellite instability in cancer of the proximal colon. Science 260:816–819

    PubMed  CAS  Google Scholar 

  22. Jallepalli PV, Lengauer C (2001) Chromosome segregation and cancer: cutting through the mystery. Nat Rev Cancer 1:109–117

    PubMed  CAS  Google Scholar 

  23. Klein G (1999) Immunoglobulin gene associated chromosomal translocations in B-cell derived tumors. In: Melchers F, Potter M (eds) Current Topics in Microbiology and Immunology, vol 246. Springer-Verlag, Heidelberg Berlin New York, pp 161–167

    Google Scholar 

  24. Stark GR (1993) Regulation and mechanisms of mammalian gene amplification. Adv Cancer Res 61:87–113

    PubMed  CAS  Google Scholar 

  25. Parsons R, Li GM, Longley M, Modrich P, Liu B, Berk T, Hamilton SR, Kinzler KW, Vogelstein B (1995) Mismatch repair deficiency in phenotypically normal human cells. Science 268:738–740

    PubMed  CAS  Google Scholar 

  26. Fishel R, Lescoe MK, Rao MR, Copeland NG, Jenkins NA, Garber J, Kane M, Kolodner R (1993) The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75:1027–1038

    PubMed  CAS  Google Scholar 

  27. Wright WE, Shay JW (2001) Cellular senescence as a tumor-protection mechanism: the essential role of counting. Curr Opin Genet Dev 11:98–103

    PubMed  CAS  Google Scholar 

  28. Hickman JA (2002) Apoptosis and tumourigenesis. Curr Opin Genet Dev 12:67–72

    PubMed  CAS  Google Scholar 

  29. Balmain A, Harris CC (2000) Carcinogenesis in mouse and human cells: parallels and paradoxes. Carcinogenesis 21:371–377

    PubMed  CAS  Google Scholar 

  30. Ross JA, Nesnow S (1999) Polycyclic aromatic hydrocarbons: correlations between DNA adducts and ras oncogene mutations. Mutat Res 424:155–166

    PubMed  CAS  Google Scholar 

  31. Bos JL (1988) The ras gene family and human carcinogenesis. Mutat Res 195:255–271

    PubMed  CAS  Google Scholar 

  32. Balmain A, Brown K (1988) Oncogene activation in chemical carcinogenesis. Adv Cancer Res 51:147–182

    PubMed  CAS  Google Scholar 

  33. Nichols WW (1963) Relationships of viruses, chromosomes and carcinogenesis. Hereditas 50:53–80

    Google Scholar 

  34. Nowell PC (1965) Chromosome changes in primary tumors. Prog Exp Tumor Res 7:83–103

    PubMed  CAS  Google Scholar 

  35. Loeb LA, Springgate CF, Battula N (1974) Errors in DNA replication as a basis of malignant changes. Cancer Res 34:2311–2321

    PubMed  CAS  Google Scholar 

  36. Bronner CE, Baker SM, Morrison PT, Warren G, Smith LG, Lescoe MK, Kane M, Earabino C, Lipford J, Lindblom A, et al (1994) Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature 368:258–261

    PubMed  CAS  Google Scholar 

  37. Duval A, Hamelin R (2002) Mutations at coding repeat sequences in mismatch repair-deficient human cancers: toward a new concept of target genes for instability. Cancer Res 62:2447–2454

    PubMed  CAS  Google Scholar 

  38. Hussein MR, Sun M, Roggero E, Sudilovsky EC, Tuthill RJ, Wood GS, Sudilovsky O (2002) Loss of heterozygosity, microsatellite instability, and mismatch repair protein alterations in the radial growth phase of cutaneous malignant melanomas. Mol Carcinog 34:35–44

    PubMed  CAS  Google Scholar 

  39. Simpson AJ, Caballero OL, Pena SD (2001) Microsatellite instability as a tool for the classification of gastric cancer. Trends Mol Med 7:76–80

    PubMed  CAS  Google Scholar 

  40. Nichols WW, Levan A, Heneen WK, Peluse M (1965) Synergism of the Schmidt-Ruppin strain of the Rous sarcoma virus and cytidine triphosphate in the induction of chromosome breaks in human cultured leukocytes. Hereditas 54:213–236

    PubMed  CAS  Google Scholar 

  41. Stehelin D, Guntaka RV, Varmus HE, Bishop JM (1976) Purification of DNA complementary to nucleotide sequences required for neoplastic transformation of fibroblasts by avian sarcoma viruses. J Mol Biol 101:349–365

    PubMed  CAS  Google Scholar 

  42. Nanus DM, Lynch SA, Rao PH, Anderson SM, Jhanwar SC, Albino AP (1991) Transformation of human kidney proximal tubule cells by a src-containing retrovirus. Oncogene 6:2105–2111

    PubMed  CAS  Google Scholar 

  43. Neil JC, Cameron ER (2002) Retroviral insertion sites and cancer: fountain of all knowledge? Cancer Cell 2:253–255

    PubMed  CAS  Google Scholar 

  44. Tsichlis PN (1987) Oncogenesis by Moloney murine leukemia virus. Anticancer Res 7:171–180

    PubMed  CAS  Google Scholar 

  45. Hsu T, Moroy T, Etiemble J, Louise A, Trepo C, Tiollais P, Buendia MA (1988) Activation of c-myc by woodchuck hepatitis virus insertion in hepatocellular carcinoma. Cell 55:627–635

    PubMed  CAS  Google Scholar 

  46. Kim R, Trubetskoy A, Suzuki T, Jenkins NA, Copeland NG, Lenz J (2003) Genome-based identification of cancer genes by proviral tagging in mouse retrovirus-induced T-cell lymphomas. J Virol 77:2056–2062

    PubMed  CAS  Google Scholar 

  47. zur Hausen H (1991) Human papillomaviruses in the pathogenesis of anogenital cancer. Virology 184:9–13

    PubMed  Google Scholar 

  48. Bibbo M, Montag AG, Lerma-Puertas E, Dytch HE, Leelakusolvong S, Bartels PH (1989) Karyometric marker features in tissue adjacent to invasive cervical carcinomas. Anal Quant Cytol Histol 11:281–285

    PubMed  CAS  Google Scholar 

  49. Munger K, Howley PM (2002) Human papillomavirus immortalization and transformation functions. Virus Res 89:213–228

    PubMed  CAS  Google Scholar 

  50. White AE, Livanos EM, Tlsty TD (1994) Differential disruption of genomic integrity and cell cycle regulation in normal human fibroblasts by the HPV oncoproteins. Genes Dev 8:666–677

    PubMed  CAS  Google Scholar 

  51. Duensing S, Munger K (2002) The human papillomavirus type 16 E6 and E7 oncoproteins independently induce numerical and structural chromosome instability. Cancer Res 62:7075–7082

    PubMed  CAS  Google Scholar 

  52. Windle B, Draper BW, Yin YX, O’Gorman S, Wahl GM (1991) A central role for chromosome breakage in gene amplification deletion formation, and amplicon integration. Genes Dev 5:160–174

    PubMed  CAS  Google Scholar 

  53. Denko NC, Giaccia AJ, Stringer JR, Stambrook PJ (1994) The human Ha-ras oncogene induces genomic instability in murine fibroblasts within one cell cycle. Proc Natl Acad Sci U S A 91:5124–5128

    PubMed  CAS  Google Scholar 

  54. Fukasawa K, Vande Woude GF (1997) Synergy between theMos/mitogen-activated protein kinase pathway and loss of p53 function in transformation and chromosome instability. Mol Cell Biol 17:506–518

    PubMed  CAS  Google Scholar 

  55. Kolligs FT, Kolligs B, Hajra KM, Hu G, Tani M, Cho KR, Fearon ER (2000) γ-Catenin is regulated by the APC tumor suppressor and its oncogenic activity is distinct from that of β-catenin. Genes Dev 14:1319–1331

    PubMed  CAS  Google Scholar 

  56. van Es JH, Barker N, Clevers H (2003) You Wnt some, you lose some: oncogenes in the Wnt signaling pathway. Curr Opin Genet Dev 13:28–33

    PubMed  Google Scholar 

  57. Boxer LM, Dang CV (2001) Translocations involving c-myc and c-myc function. Oncogene 20:5595–5610

    PubMed  CAS  Google Scholar 

  58. Bahram F, von der Lehr N, Cetinkaya C, Larsson LG (2000) c-Myc hot spot mutations in lymphomas result in inefficient ubiquitination and decreased proteasome-mediated turnover. Blood 95:2104–2110

    PubMed  CAS  Google Scholar 

  59. Gregory MA, Hann SR (2000) c-Myc proteolysis by the ubiquitin-proteasome pathway: stabilization of c-Myc in Burkitt’s lymphoma cells. Mol Cell Biol 20:2423–2435

    PubMed  CAS  Google Scholar 

  60. Bonilla M, Ramirez M, Lopez-Cueto J, Gariglio P (1988) In vivo amplification and rearrangement of c-myc oncogene in human breast tumors. J Natl Cancer Inst 80:665–671

    PubMed  CAS  Google Scholar 

  61. Escot C, Theillet C, Lidereau R, Spyratos F, Champeme MH, Gest J, Callahan R (1986) Genetic alteration of the c-myc protooncogene (MYC) in human primary breast carcinomas. Proc Natl Acad Sci U S A 83:4834–4838

    PubMed  CAS  Google Scholar 

  62. Sikora K, Chan S, Evan G, Gabra H, Markham N, Stewart J, Watson J (1987) c-myc oncogene expression in colorectal cancer. Cancer 59:1289–1295

    PubMed  CAS  Google Scholar 

  63. Smith DR, Myint T, Goh HS (1993) Over-expression of the c-myc proto-oncogene in colorectal carcinoma. Br J Cancer 68:407–413

    PubMed  CAS  Google Scholar 

  64. Stewart J, Evan G, Watson J, Sikora K (1986) Detection of the c-myc oncogene product in colonic polyps and carcinomas. Br J Cancer 53:1–6

    PubMed  CAS  Google Scholar 

  65. Nagy P, Evarts RP, Marsden E, Roach J, Thorgeirsson SS (1988) Cellular distribution of c-myc transcripts during chemical hepatocarcinogenesis in rats. Cancer Res 48:5522–5527

    PubMed  CAS  Google Scholar 

  66. Sargent LM, Sanderson ND, Thorgeirsson SS (1996) Ploidy and karyotypic alterations associated with early events in the development of hepatocarcinogenesis in transgenic mice harboring c-myc and transforming growth factor alpha transgenes. Cancer Res 56:2137–2142

    PubMed  CAS  Google Scholar 

  67. McCormack SJ, Weaver Z, Deming S, Natarajan G, Torri J, Johnson MD, Liyanage M, Ried T, Dickson RB (1998) Myc/p53 interactions in transgenic mouse mammary development, tumorigenesis and chromosomal instability. Oncogene 16:2755–2766

    PubMed  CAS  Google Scholar 

  68. Fearon ER, Gruber SB (2001) Molecular abnormalities in colon and rectal cancer. In: Mendelson J, Howley PM, Israel MA, Liotta LA (eds) The molecular basis of cancer. W.B. Saunders, Philadelphia, pp 289–312

    Google Scholar 

  69. Denis N, Kitzis A, Kruh J, Dautry F, Corcos D (1991) Stimulation of methotrexate resistance and dihydrofolate reductase gene amplification by c-myc. Oncogene 6:1453–1457

    PubMed  CAS  Google Scholar 

  70. Mai S (1994) Overexpression of c-myc precedes amplification of the gene encoding dihydrofolate reductase. Gene 148:253–260

    PubMed  CAS  Google Scholar 

  71. Mai S, Hanley-Hyde J, Fluri M (1996) c-Myc overexpression associated DHFR gene amplification in hamster, rat, mouse and human cell lines. Oncogene 12:277–288

    PubMed  CAS  Google Scholar 

  72. Felsher DW, Bishop JM (1999) Transient excess of MYC activity can elicit genomic instability and tumorigenesis. Proc Natl Acad Sci U S A 96:3940–3944

    PubMed  CAS  Google Scholar 

  73. Mai S, Hanley-Hyde J, Rainey GJ, Kuschak TI, Paul JT, Littlewood TD, Mischak H, Stevens LM, Henderson DW, Mushinski JF (1999) Chromosomal and extrachromosomal instability of the cyclin D2 gene is induced by Myc overexpression. Neoplasia 1:241–252

    PubMed  CAS  Google Scholar 

  74. Kuschak TI, Taylor C, McMillan-Ward E, Israels S, Henderson DW, Mushinski JF, Wright JA, Mai S (1999) The ribonucleotide reductase R2 gene is anon-transcribed target of c-Myc-induced genomic instability. Gene 238:351–365

    PubMed  CAS  Google Scholar 

  75. Paulson TG, Almasan A, Brody LL, Wahl GM (1998) Gene amplification in a p53-deficient cell line requires cell cycle progression under conditions that generate DNA breakage. Mol Cell Biol 18:3089–3100

    PubMed  CAS  Google Scholar 

  76. Karlsson A, Giuriato S, Tang F, Fung-Weier J, Levan G, Felsher DW (2003) Genomically complex lymphomas undergo sustained tumor regression upon MYC inactivation unless they acquire novel chromosomal translocations. Blood 101:2797–2803

    PubMed  CAS  Google Scholar 

  77. Hynes NE (1993) Amplification and overexpression of the erbB-2 gene in human tumors: its involvement in tumor development, significance as a prognostic factor, and potential as a target for cancer therapy. Semin Cancer Biol 4:19–26

    PubMed  CAS  Google Scholar 

  78. Jiang W, Kahn SM, Tomita N, Zhang YJ, Lu SH, Weinstein IB (1992) Amplification and expression of the human cyclin D gene in esophageal cancer. Cancer Res 52:2980–2983

    PubMed  CAS  Google Scholar 

  79. Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B (1992) Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358:80–83

    PubMed  CAS  Google Scholar 

  80. Sargent LM, Zhou X, Keck CL, Sanderson ND, Zimonjic DB, Popescu NC, Thorgeirsson SS (1999) Nonrandom cytogenetic alterations in hepatocellular carcinoma from transgenic mice overexpressing c-Myc and transforming growth factor-alpha in the liver. Am J Pathol 154:1047–1055

    PubMed  CAS  Google Scholar 

  81. Adams JM, Harris AW, Pinkert CA, Corcoran LM, Alexander WS, Cory S, Palmiter RD, Brinster RL (1985) The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318:533–538

    PubMed  CAS  Google Scholar 

  82. Kovalchuk AL, Qi CF, Torrey TA, Taddesse-Heath L, Feigenbaum L, Park SS, Gerbitz A, Klobeck G, Hoertnagel K, Polack A, Bornkamm GW, Janz S, Morse HC 3rd (2000) Burkitt lymphoma in the mouse. J Exp Med 192:1183–1190

    PubMed  CAS  Google Scholar 

  83. Schmitt CA, McCurrach ME, de Stanchina E, Wallace-Brodeur RR, Lowe SW (1999) INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev 13:2670–2677

    PubMed  CAS  Google Scholar 

  84. Eischen CM, Roussel MF, Korsmeyer SJ, Cleveland JL (2001) Bax loss impairs Myc-induced apoptosis and circumvents the selection of p53 mutations during Myc-mediated lymphomagenesis. Mol Cell Biol 21:7653–7662

    PubMed  CAS  Google Scholar 

  85. Strasser A, Harris AW, Bath ML, Cory S (1990) Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature 348:331–333

    PubMed  CAS  Google Scholar 

  86. Schmitt CA, Fridman JS, Yang M, Baranov E, Hoffman RM, Lowe SW (2002) Dissecting p53 tumor suppressor functions in vivo. Cancer Cell 1:289–298

    PubMed  CAS  Google Scholar 

  87. Rockwood LD, Torrey TA, Kim JS, Coleman AE, Kovalchuk AL, Xiang S, Ried T, Morse HC 3rd, Janz S (2002) Genomic instability in mouse Burkitt lymphoma is dominatedby illegitimate genetic recombinations, not point mutations. Oncogene 21:7235–7240

    PubMed  CAS  Google Scholar 

  88. Lindstrom MS, Wiman KG (2002) Role of genetic and epigenetic changes in Burkitt lymphoma. Semin Cancer Biol 12:381–387

    PubMed  CAS  Google Scholar 

  89. Schimke RT (1986) Methotrexate resistance and gene amplification. Mechanisms and implications. Cancer 57:1912–1917

    PubMed  CAS  Google Scholar 

  90. Schimke RT, Sherwood SW, Hill AB, Johnston RN (1986) Overreplication and recombination of DNA in higher eukaryotes: potential consequences and biological implications. Proc Natl Acad Sci U S A 83:2157–2161

    PubMed  CAS  Google Scholar 

  91. Windle BE, Wahl GM (1992) Molecular dissection of mammalian gene amplification: new mechanistic insights revealed by analyses of very early events. Mutat Res 276:199–224

    PubMed  CAS  Google Scholar 

  92. Vaziri C, Saxena S, Jeon Y, Lee C, Murata K, Machida Y, Wagle N, Hwang DS, Dutta A (2003) A p53-dependent checkpoint pathway prevents rereplication. Mol Cell 11:997–1008

    PubMed  CAS  Google Scholar 

  93. Watson JD, Oster SK, Shago M, Khosravi F, Penn LZ (2002) Identifying genes regulated in a Myc-dependent manner. J Biol Chem 277:36921–36930

    PubMed  CAS  Google Scholar 

  94. Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J, Cocito A, Amati B (2003) Genomic targets of the human c-Myc protein. Genes Dev 17:1115–1129

    PubMed  CAS  Google Scholar 

  95. Smith KA, Agarwal ML, Chernov MV, Chernova OB, Deguchi Y, Ishizaka Y, Patterson TE, Poupon MF, Stark GR (1995) Regulation and mechanisms of gene amplification. Philos Trans R Soc Lond B Biol Sci 347:49–56

    PubMed  CAS  Google Scholar 

  96. Galloway SM (1994) Chromosome aberrations induced in vitro: mechanisms, delayed expression, and intriguing questions. Environ Mol Mutagen 23Suppl 24:44–53

    PubMed  CAS  Google Scholar 

  97. Vafa O, Wade M, Kern S, Beeche M, Pandita TK, Hampton GM, Wahl GM (2002) c-Myc can induce DNA damage increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell 9:1031–1044

    PubMed  CAS  Google Scholar 

  98. Felsher DW, Zetterberg A, Zhu J, Tlsty T, Bishop JM (2000) Overexpression of MYC causes p53-dependent G2 arrest of normal fibroblasts. Proc Natl Acad Sci U S A 97:10544–10548

    PubMed  CAS  Google Scholar 

  99. Snow EC (1997) The role of c-myc during normal B cell proliferation, and as B cells undergo malignant transformation. In: Potter M, Melchers F (eds) Current Topics in Microbiology and Immunology, vol 224. Springer-Verlag, Heidelberg Berlin New York, pp 211–220

    Google Scholar 

  100. Bowman T, Broome MA, Sinibaldi D, Wharton W, Pledger WJ, Sedivy JM, Irby R, Yeatman T, Courtneidge SA, Jove R (2001) Stat3-mediated Myc expression is required for Src transformation and PDGF-induced mitogenesis. Proc Natl Acad Sci U S A 98:7319–7324

    PubMed  CAS  Google Scholar 

  101. Courtneidge SA (2002) Role of Src in signal transduction pathways. The Jubilee Lecture. Biochem Soc Trans 30:11–17

    PubMed  CAS  Google Scholar 

  102. Iritani BM, Eisenman RN (1999) c-Myc enhances protein synthesis and cell size during B lymphocyte development. Proc Natl Acad Sci U S A 96:13180–13185

    PubMed  CAS  Google Scholar 

  103. Schuhmacher M, Staege MS, Pajic A, Polack A, Weidle UH, Bornkamm GW, Eick D, Kohlhuber F (1999) Control of cell growth by c-Myc in the absence of cell division. Curr Biol 9:1255–1258

    PubMed  CAS  Google Scholar 

  104. Gomez-Roman N, Grandori C, Eisenman RN, White RJ (2003) Direct activation of RNA polymerase III transcription by c-Myc. Nature 421:290–294

    PubMed  CAS  Google Scholar 

  105. O’Connell BC, Cheung AF, Simkevich CP, Tam W, Ren X, Mateyak MK, Sedivy JM (2003) A large scale genetic analysis of c-Myc-regulated gene expression patterns. J Biol Chem 278:12563–12573

    PubMed  CAS  Google Scholar 

  106. Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA, Dalla-Favera R, Dang CV (1997) c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci U S A 94:6658–6663

    PubMed  CAS  Google Scholar 

  107. Helbock HJ, Beckman KB, Shigenaga MK, Walter PB, Woodall AA, Yeo HC, Ames BN (1998) DNA oxidation matters: the HPLC-electrochemical detection assay of 8-oxo-deoxyguanosine and 8-oxo-guanine. Proc Natl Acad Sci U S A 95:288–293

    PubMed  CAS  Google Scholar 

  108. Irani K, Xia Y, Zweier JL, Sollott SJ, Der CJ, Fearon ER, Sundaresan M, Finkel T, Goldschmidt-Clermont PJ (1997) Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 275:1649–1652

    PubMed  CAS  Google Scholar 

  109. Yang JQ, Li S, Huang Y, Zhang HJ, Domann FE, Buettner GR, Oberley LW (2001) V-Ha-Ras overexpression induces superoxide production and alters levels of primary antioxidant enzymes. Antioxid Redox Signal 3:697–709

    PubMed  CAS  Google Scholar 

  110. Tanaka H, Matsumura I, Ezoe S, Satoh Y, Sakamaki T, Albanese C, Machii T, Pestell RG, Kanakura Y (2002) E2F1 and c-Myc potentiate apoptosis through inhibition of NF-kappaB activity that facilitates MnSOD-mediated ROS elimination. Mol Cell 9:1017–1029

    PubMed  CAS  Google Scholar 

  111. Karlsson A, Deb-Basu D, Cherry A, Turner S, Ford J, Felsher DW (2003) Defective double-strand DNA break repair and chromosomal translocations by MYC overexpression. Proc Natl Acad Sci U S A 100(17):9974–9979

    PubMed  CAS  Google Scholar 

  112. Xu Y, Nguyen Q, Lo DC, Czaja MJ (1997) c-myc-Dependent hepatoma cell apoptosis results from oxidative stress and not a deficiency of growth factors. J Cell Physiol 170:192–199

    PubMed  CAS  Google Scholar 

  113. Linke SP, Clarkin KC, Wahl GM (1997) p53 mediates permanent arrest over multiple cell cycles in response to gamma-irradiation. Cancer Res 57:1171–1179

    PubMed  CAS  Google Scholar 

  114. Chen Q, Ames BN (1994) Senescence-like growth arrest induced by hydrogen peroxide in human diploid fibroblast F65 cells. Proc Natl Acad Sci U S A 91:4130–4134

    PubMed  CAS  Google Scholar 

  115. Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460

    PubMed  CAS  Google Scholar 

  116. Matsui A, Ikeda T, Enomoto K, Hosoda K, Nakashima H, Omae K, Watanabe M, Hibi T, Kitajima M (2000) Increased formation of oxidative DNA damage 8-hydroxy-2′-deoxyguanosine, in human breast cancer tissue and its relationship to GSTP1 and COMT genotypes. Cancer Lett 151:87–95

    PubMed  CAS  Google Scholar 

  117. Gupta A, Rosenberger SF, Bowden GT (1999) Increased ROS levels contribute to elevated transcription factor and MAP kinase activities in malignantly progressed mouse keratinocyte cell lines. Carcinogenesis 20:2063–2073

    PubMed  CAS  Google Scholar 

  118. Feig DI, Reid TM, Loeb LA (1994) Reactive oxygen species in tumorigenesis. Cancer Res 54:1890s–1894s

    PubMed  CAS  Google Scholar 

  119. Shibutani S, Takeshita M, Grollman AP (1991) Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 349:431–434

    PubMed  CAS  Google Scholar 

  120. Rodin SN, Rodin AS (2000) Human lung cancer and p53: the interplay between mutagenesis and selection. Proc Natl Acad Sci U S A 97:12244–12249

    PubMed  CAS  Google Scholar 

  121. Cheng KC, Cahill DS, Kasai H, Nishimura S, Loeb LA (1992) 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G-T and A-C substitutions. J Biol Chem 267:166–172

    PubMed  CAS  Google Scholar 

  122. Hussain SP, Raja K, Amstad PA, Sawyer M, Trudel LJ, Wogan GN, Hofseth LJ, Shields PG, Billiar TR, Trautwein C, Hohler T, Galle PR, Phillips DH, Markin R, Marrogi AJ, Harris CC (2000) Increased p53 mutation load in nontumorous human liver of Wilson disease and hemochromatosis: oxyradical overload diseases. Proc Natl Acad Sci U S A 97:12770–12775

    PubMed  CAS  Google Scholar 

  123. Hussain SP, Amstad P, Raja K, Ambs S, Nagashima M, Bennett WP, Shields PG, Ham AJ, Swenberg JA, Marrogi AJ, Harris CC (2000) Increased p53 mutation load in noncancerous colon tissue from ulcerative colitis: a cancer-prone chronic inflammatory disease. Cancer Res 60:3333–3337

    PubMed  CAS  Google Scholar 

  124. Jackson AL, Chen R, Loeb LA (1998) Induction of microsatellite instability by oxidative DNA damage. Proc Natl Acad Sci U S A 95:12468–12473

    PubMed  CAS  Google Scholar 

  125. Jackson AL, Loeb LA (2000) Microsatellite instability induced by hydrogen peroxide in Escherichia coli. Mutat Res 447:187–198

    PubMed  CAS  Google Scholar 

  126. Huang J, Papadopoulos N, McKinley AJ, Farrington SM, Curtis LJ, Wyllie AH, Zheng S, Willson JK, Markowitz SD, Morin P, Kinzler KW, Vogelstein B, Dunlop MG (1996) APC mutations in colorectal tumors with mismatch repair deficiency. Proc Natl Acad Sci U S A 93:9049–9054

    PubMed  CAS  Google Scholar 

  127. Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, Fan RS, Zborowska E, Kinzler KW, Vogelstein B, et al (1995) Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 268:1336–1338

    PubMed  CAS  Google Scholar 

  128. Gasche C, Chang CL, Rhees J, Goel A, Boland CR (2001) Oxidative stress increases frameshift mutations in human colorectal cancer cells. Cancer Res 61:7444–7448

    PubMed  CAS  Google Scholar 

  129. Zienolddiny S, Ryberg D, Haugen A (2000) Induction of microsatellite mutations by oxidative agents in human lung cancer cell lines. Carcinogenesis 21:1521–1526

    PubMed  CAS  Google Scholar 

  130. Muir CS, Wagner G, Demaret E, Nagy-Tiborcz A, Schlaefer K, Villhauer-Lehr M, Whelan S (1982) Directory of on-going research in cancer epidemiology 1982. IARC Sci Publ, Lyon, pp 1–715

    Google Scholar 

  131. Murakami H, Sanderson ND, Nagy P, Marino PA, Merlino G, Thorgeirsson SS (1993) Transgenic mouse model for synergistic effects of nuclear oncogenes and growth factors in tumorigenesis: interaction of c-myc and transforming growth factor alpha in hepatic oncogenesis. Cancer Res 53:1719–1723

    PubMed  CAS  Google Scholar 

  132. Factor VM, Kiss A, Woitach JT, Wirth PJ, Thorgeirsson SS (1998) Disruption of redox homeostasis in the transforming growth factor-alpha/c-myc transgenic mouse model of accelerated hepatocarcinogenesis. J Biol Chem 273:15846–15853

    PubMed  CAS  Google Scholar 

  133. Factor VM, Laskowska D, Jensen MR, Woitach JT, Popescu NC, Thorgeirsson SS (2000) Vitamin E reduces chromosomal damage and inhibits hepatic tumor formation in a transgenic mouse model. Proc Natl Acad Sci U S A 97:2196–2201

    PubMed  CAS  Google Scholar 

  134. Trumpp A, Refaeli Y, Oskarsson T, Gasser S, Murphy M, Martin GR, Bishop JM (2001) c-Myc regulates mammalian body size by controlling cell number but not cell size. Nature 414:768–773

    PubMed  CAS  Google Scholar 

  135. Mateyak MK, Obaya AJ, Adachi S, Sedivy JM (1997) Phenotypes of c-Myc-deficient rat fibroblasts isolatedby targeted homologous recombination. Cell Growth Differ 8:1039–1048

    PubMed  CAS  Google Scholar 

  136. Blagosklonny MV, Pardee AB (2002) The restriction point of the cell cycle. Cell Cycle 1:103–110

    PubMed  CAS  Google Scholar 

  137. Chellappan SP, Hiebert S, Mudryj M, Horowitz JM, Nevins JR (1991) The E2F transcription factor is a cellular target for the RB protein. Cell 65:1053–1061

    PubMed  CAS  Google Scholar 

  138. Weintraub SJ, Chow KN, Luo RX, Zhang SH, He S, Dean DC (1995)Mechanism of active transcriptional repression by the retinoblastoma protein. Nature 375:812–815

    PubMed  CAS  Google Scholar 

  139. Beier R, Burgin A, Kiermaier A, Fero M, Karsunky H, Saffrich R, Moroy T, Ansorge W, Roberts J, Eilers M (2000) Induction of cyclin E-cdk2 kinase activity, E2F-dependent transcription and cell growth by Myc are genetically separable events. EMBO J 19:5813–5823

    PubMed  CAS  Google Scholar 

  140. Mateyak MK, Obaya AJ, Sedivy JM (1999) c-Myc regulates cyclin D-Cdk4 and-Cdk6 activity but affects cell cycle progression at multiple independent points. Mol Cell Biol 19:4672–4683

    PubMed  CAS  Google Scholar 

  141. Santoni-Rugiu E, Falck J, Mailand N, Bartek J, Lukas J (2000) Involvement of Myc activity in a G(1)/S-promoting mechanism parallel to the pRb/E2F pathway. Mol Cell Biol 20:3497–3509

    PubMed  CAS  Google Scholar 

  142. Lasorella A, Noseda M, Beyna M, Yokota Y, Iavarone A (2000) Id2 is a retinoblastoma protein target and mediates signalling by Myc oncoproteins. Nature 407:592–598

    PubMed  CAS  Google Scholar 

  143. Leone G, Sears R, Huang E, Rempel R, Nuckolls F, Park CH, Giangrande P, Wu L, Saavedra HI, Field SJ, Thompson MA, Yang H, Fujiwara Y, Greenberg ME, Orkin S, Smith C, Nevins JR (2001) Myc requires distinct E2F activities to induce S phase and apoptosis. Mol Cell 8:105–113

    PubMed  CAS  Google Scholar 

  144. Dulic V, Lees E, Reed SI (1992) Association of human cyclin E with a periodic G1-S phase protein kinase. Science 257:1958–1961

    PubMed  CAS  Google Scholar 

  145. Hatakeyama M, Brill JA, Fink GR, Weinberg RA (1994)Collaboration of G1 cyclins in the functional inactivation of the retinoblastoma protein. Genes Dev 8:1759–1771

    PubMed  CAS  Google Scholar 

  146. Hinds PW, Mittnacht S, Dulic V, Arnold A, Reed SI, Weinberg RA (1992) Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell 70:993–1006

    PubMed  CAS  Google Scholar 

  147. Loda M, Cukor B, Tam SW, Lavin P, Fiorentino M, Draetta GF, Jessup JM, Pagano M (1997) Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nat Med 3:231–234

    PubMed  CAS  Google Scholar 

  148. Catzavelos C, Bhattacharya N, Ung YC, Wilson JA, Roncari L, Sandhu C, Shaw P, Yeger H, Morava-Protzner I, Kapusta L, Franssen E, Pritchard KI, Slingerland JM (1997) Decreased levels of the cell-cycle inhibitor p27Kip1 protein: prognostic implications in primary breast cancer. Nat Med 3:227–230

    PubMed  CAS  Google Scholar 

  149. Martins CP, Berns A (2002) Loss of p27(Kip1) but not p21(Cip1) decreases survival and synergizes with MYC in murine lymphomagenesis. EMBO J 21:3739–3748

    PubMed  CAS  Google Scholar 

  150. Montagnoli A, Fiore F, Eytan E, Carrano AC, Draetta GF, Hershko A, Pagano M (1999) Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation. Genes Dev 13:1181–1189

    PubMed  CAS  Google Scholar 

  151. Vlach J, Hennecke S, Amati B (1997) Phosphorylation-dependent degradation of the cyclin-dependent kinase inhibitor p27. EMBO J 16:5334–5344

    PubMed  CAS  Google Scholar 

  152. Nguyen H, Gitig DM (1999) Koff Cell-free degradation of p27(kip1), a G1 cyclin-dependent kinase inhibitor, is dependent on CDK2 activity and the proteasome. Mol Cell Biol 19:1190–1201

    PubMed  CAS  Google Scholar 

  153. Carrano AC, Eytan E, Hershko A, Pagano M (1999) SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1:193–199

    PubMed  CAS  Google Scholar 

  154. Tsvetkov LM, Yeh KH, Lee SJ, Sun H, Zhang H (1999) p27(Kip1) ubiquitination and degradation is regulated by the SCF(Skp2) complex through phosphorylated Thr187 in p27. Curr Biol 9:661–664

    PubMed  CAS  Google Scholar 

  155. O’Hagan RC, Ohh M, David G, de Alboran IM, Alt FW, Kaelin WG Jr, DePinho RA (2000) Myc-enhanced expression of Cul1 promotes ubiquitin-dependent proteolysis and cell cycle progression. Genes Dev 14:2185–2191

    PubMed  CAS  Google Scholar 

  156. Vlach J, Hennecke S, Alevizopoulos K, Conti D, Amati B (1996) Growth arrest by the cyclin-dependent kinase inhibitor p27Kip1 is abrogated by c-Myc. EMBO J 15:6595–6604

    PubMed  CAS  Google Scholar 

  157. Alevizopoulos K, Vlach J, Hennecke S, Amati B (1997) Cyclin E and c-Myc promote cell proliferation in the presence of p16INK4a and of hypophosphorylated retinoblastoma family proteins. EMBO J 16:5322–5333

    PubMed  CAS  Google Scholar 

  158. Spruck CH, Won KA, Reed SI (1999) Deregulated cyclin E induces chromosome instability. Nature 401:297–300

    PubMed  CAS  Google Scholar 

  159. Walter J, Sun L, Newport J (1998) Regulated chromosomal DNA replication in the absence of a nucleus. Mol Cell 1:519–529

    PubMed  CAS  Google Scholar 

  160. Pihan GA, Purohit A, Wallace J, Knecht H, Woda B, Quesenberry P, Doxsey SJ (1998) Centrosome defects and genetic instability in malignant tumors. Cancer Res 58:3974–3985

    PubMed  CAS  Google Scholar 

  161. Hua XH, Yan H, Newport J (1997) A role for Cdk2 kinase in negatively regulating DNA replication during S phase of the cell cycle. J Cell Biol 137:183–192

    PubMed  CAS  Google Scholar 

  162. Angus SP, Wheeler LJ, Ranmal SA, Zhang X, Markey MP, Mathews CK, Knudsen ES (2002) Retinoblastoma tumor suppressor targets dNTP metabolism to regulate DNA replication. J Biol Chem 277:44376–44384

    PubMed  CAS  Google Scholar 

  163. Lengronne A, Schwob E (2002) The yeast CDK inhibitor Sic1 prevents genomic instability by promoting replication origin licensing in late G(1). Mol Cell 9:1067–1078

    PubMed  CAS  Google Scholar 

  164. Nyberg KA, Michelson RJ, Putnam CW, Weinert TA (2002) Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet 36:617–656

    PubMed  CAS  Google Scholar 

  165. Huang LC, Clarkin KC, Wahl GM (1996) Sensitivity and selectivity of the DNA damage sensor responsible for activating p53-dependent G1 arrest. Proc Natl Acad Sci U S A 93:4827–4832

    PubMed  CAS  Google Scholar 

  166. Wahl GM, Carr AM (2001) The evolution of diverse biological responses to DNA damage: insights from yeast and p53. Nat Cell Biol 3:E277–E286

    PubMed  CAS  Google Scholar 

  167. D’Amours D, Jackson SP (2002) The Mre11 complex: at the crossroads of DNA repair and checkpoint signalling. Nat Rev Mol Cell Biol 3:317–327

    PubMed  CAS  Google Scholar 

  168. Mirzoeva OK, Petrini JH (2001) DNA damage-dependent nuclear dynamics of the Mre11 complex. Mol Cell Biol 21:281–288

    PubMed  CAS  Google Scholar 

  169. Petrini JH (1999) The mammalian Mre11-Rad50-nbs1 protein complex: integration of functions in the cellular DNA-damage response. Am J Hum Genet 64:1264–1269

    PubMed  CAS  Google Scholar 

  170. Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421:499–506

    PubMed  CAS  Google Scholar 

  171. Mirzoeva OK, Petrini JH (2003) DNA replication-dependent nuclear dynamics of the mre11 complex. Mol Cancer Res 1:207–218

    PubMed  CAS  Google Scholar 

  172. Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L, Smorodinsky NI, Prives C, Reiss Y, Shiloh Y, Ziv Y (1998) Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281:1674–1677

    PubMed  CAS  Google Scholar 

  173. Matsuoka S, Rotman G, Ogawa A, Shiloh Y, Tamai K, Elledge SJ (2000) Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc Natl Acad Sci U S A 97:10389–10394

    PubMed  CAS  Google Scholar 

  174. Lambert PF, Kashanchi F, Radonovich MF, Shiekhattar R, Brady JN (1998) Phosphorylation of p53 serine 15 increases interaction with CBP. J Biol Chem 273:33048–33053

    PubMed  CAS  Google Scholar 

  175. Unger T, Juven-Gershon T, Moallem E, Berger M, Vogt Sionov R, Lozano G, Oren M, Haupt Y (1999) Critical role for Ser20 of human p53 in the negative regulation of p53 by Mdm2. EMBO J 18:1805–1814

    PubMed  CAS  Google Scholar 

  176. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816

    PubMed  CAS  Google Scholar 

  177. Sheen JH, Dickson RB (2002) Overexpression of c-Myc alters G(1)/S arrest following ionizing radiation. Mol Cell Biol 22:1819–1833

    PubMed  CAS  Google Scholar 

  178. Hermeking H, Eick D (1994) Mediation of c-Myc-induced apoptosis by p53. Science 265:2091–2093

    PubMed  CAS  Google Scholar 

  179. Seoane J, Le HV, Massague J (2002) Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419:729–734

    PubMed  CAS  Google Scholar 

  180. Li Q, Dang CV (1999) c-Myc overexpression uncouples DNA replication from mitosis. Mol Cell Biol 19:5339–5351

    PubMed  CAS  Google Scholar 

  181. Shim J, Lee H, Park J, Kim H, Choi EJ (1996) A non-enzymatic p21 protein inhibitor of stress-activated protein kinases. Nature 381:804–806

    PubMed  CAS  Google Scholar 

  182. Asada M, Yamada T, Ichijo H, Delia D, Miyazono K, Fukumuro K, Mizutani S (1999) Apoptosis inhibitory activity of cytoplasmic p21(Cip1/WAF1) in monocytic differentiation. EMBO J 18:1223–1234

    PubMed  CAS  Google Scholar 

  183. Di Leonardo A, Linke SP, Clarkin K, Wahl GM (1994) DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev 8:2540–2551

    PubMed  Google Scholar 

  184. Allan LA, Duhig T, Read M, Fried M (2000) The p21(WAF1/CIP1) promoter is methylated in Rat-1 cells: stable restoration of p53-dependent p21(WAF1/CIP1) expression after transfection of a genomic clone containing the p21(WAF1/CIP1) gene. Mol Cell Biol 20:1291–1298

    PubMed  CAS  Google Scholar 

  185. Minella AC, Swanger J, Bryant E, Welcker M, Hwang H, Clurman BE (2002) p53 and p21 form an inducible barrier that protects cells against cyclin E-cdk2 deregulation. Curr Biol 12:1817–1827

    PubMed  CAS  Google Scholar 

  186. Nasmyth K (2002) Segregating sister genomes: the molecular biology of chromosome separation. Science 297:559–565

    PubMed  CAS  Google Scholar 

  187. Niculescu AB 3rd, Chen X, Smeets M, Hengst L, Prives C, Reed SI (1998) Effects of p21(Cip1/Waf1) at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Mol Cell Biol 18:629–643

    PubMed  CAS  Google Scholar 

  188. Bates S, Ryan KM, Phillips AC, Vousden KH (1998) Cell cycle arrest and DNA endoreduplication following p21Waf1/Cip1 expression. Oncogene 17:1691–1703

    PubMed  CAS  Google Scholar 

  189. Stewart ZA, Leach SD, Pietenpol JA (1999) p21(Waf1/Cip1) inhibition of cyclin E/Cdk2 activity prevents endoreduplication after mitotic spindle disruption. Mol Cell Biol 19:205–215

    PubMed  CAS  Google Scholar 

  190. Andreassen PR, Margolis RL (1994) Microtubule dependency of p34cdc2 inactivation and mitotic exit in mammalian cells. J Cell Biol 127:789–802

    PubMed  CAS  Google Scholar 

  191. Khan SH, Wahl GM (1998) p53 and pRb prevent rereplication in response to microtubule inhibitors by mediating a reversible G1 arrest. Cancer Res 58:396–401

    PubMed  CAS  Google Scholar 

  192. Kung AL, Sherwood SW, Schimke RT (1990) Cell line-specific differences in the control of cell cycle progression in the absence of mitosis. Proc Natl Acad Sci USA 87:9553–9557

    PubMed  CAS  Google Scholar 

  193. Lanni JS, Jacks T (1998) Characterization of the p53-dependent postmitotic checkpoint following spindle disruption. Mol Cell Biol 18:1055–1064

    PubMed  CAS  Google Scholar 

  194. Minn AJ, Boise LH, Thompson CB (1996) Expression of Bcl-xL and loss of p53 can cooperate to overcome a cell cycle checkpoint induced by mitotic spindle damage. Genes Dev 10:2621–2631

    PubMed  CAS  Google Scholar 

  195. Pourquier P, Pommier Y (2001) Topoisomerase I-mediated DNA damage. Adv Cancer Res 80:189–216

    PubMed  CAS  Google Scholar 

  196. Zhu J, Schiestl RH (1996) Topoisomerase I involvement in illegitimate recombination in Saccharomyces cerevisiae. Mol Cell Biol 16:1805–1812

    PubMed  CAS  Google Scholar 

  197. Labib K, Diffley JF (2001) Is the MCM2-7 complex the eukaryotic DNA replication fork helicase? Curr Opin Genet Dev 11:64–70

    PubMed  CAS  Google Scholar 

  198. Chiang YC, Teng SC, Su YN, Hsieh FJ, Wu KJ (2003) c-MYC directly regulates the transcription of NBS1 gene involved in DNA double-strand break repair. J Biol Chem 13:13

    Google Scholar 

  199. Schorl C, Sedivy JM (2003) Loss of protooncogene c-Myc function impedes G(1) phase progression both before and after the restriction point. Mol Biol Cell 14:823–835

    PubMed  CAS  Google Scholar 

  200. Williams BR, Mirzoeva OK, Morgan WF, Lin J, Dunnick W, Petrini JH (2002) A murine model of Nijmegen breakage syndrome. Curr Biol 12:648–653

    PubMed  CAS  Google Scholar 

  201. Grandori C, Wu KJ, Fernandez P, Ngouenet C, Grim J, Clurman BE, Moser MJ, Oshima J, Russell DW, Swisshelm K, Frank S, Amati B, Dalla-Favera R, Monnat RJ Jr (2003) Werner syndrome protein limits MYC-induced cellular senescence. Genes Dev 17:1569–1574

    PubMed  CAS  Google Scholar 

  202. Schar P (2001) DNA damage genome instability Spontaneous, and cancer-when DNA replication escapes control. Cell 104:329–332

    PubMed  CAS  Google Scholar 

  203. Loeb LA (2001) A mutator phenotype in cancer. Cancer Res 61:3230–3239

    PubMed  CAS  Google Scholar 

  204. Felsher DW, Bishop JM (1999) Reversible tumorigenesis by MYC in hematopoietic lineages. Mol Cell 4:199–207

    PubMed  CAS  Google Scholar 

  205. Pelengaris S, Littlewood T, Khan M, Elia G, Evan G (1999) Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol Cell 3:565–577

    PubMed  CAS  Google Scholar 

  206. Pelengaris S, Khan M, Evan GI (2002) Suppression of Myc-induced apoptosis in beta cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell 109:321–334

    PubMed  CAS  Google Scholar 

  207. D’Cruz CM, Gunther EJ, Boxer RB, Hartman JL, Sintasath L, Moody SE, Cox JD, Ha SI, Belka GK, Golant A, Cardiff RD, Chodosh LA (2001) c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations. Nat Med 7:235–239

    PubMed  CAS  Google Scholar 

  208. Ilyas M, Straub J, Tomlinson IP, Bodmer WF (1999) Genetic pathways in colorectal and other cancers. Eur J Cancer 35:1986–2002

    PubMed  CAS  Google Scholar 

  209. Ugolini F, Charafe-Jauffret E, Bardou VJ, Geneix J, Adelaide J, Labat-Moleur F, Penault-Llorca F, Longy M, Jacquemier J, Birnbaum D, Pebusque MJ (2001) WNT pathway and mammary carcinogenesis: loss of expression of candidate tumor suppressor gene SFRP1 in most invasive carcinomas except of the medullary type. Oncogene 20:5810–5817

    PubMed  CAS  Google Scholar 

  210. Smalley MJ, Dale TC (1999) Wnt signalling in mammalian development and cancer. Cancer Metastasis Rev 18:215–230

    PubMed  CAS  Google Scholar 

  211. You Z, Saims D, Chen S, Zhang Z, Guttridge DC, Guan KL, MacDougald OA, Brown AM, Evan G, Kitajewski J, Wang CY (2002) Wnt signaling promotes oncogenic transformation by inhibiting c-Myc-induced apoptosis. J Cell Biol 157:429–440

    PubMed  CAS  Google Scholar 

  212. Smalley MJ, Dale TC (2001) Wnt signaling and mammary tumorigenesis. J Mammary Gland Biol Neoplasia 6:37–52

    PubMed  CAS  Google Scholar 

  213. Gunther EJ, Moody SE, Belka GK, Hahn KT, Innocent N, Dugan KD, Cardiff RD, Chodosh LA (2003) Impact of p53 loss on reversal and recurrence of conditional Wnt-induced tumorigenesis. Genes Dev 17:488–501

    PubMed  CAS  Google Scholar 

  214. Jain M, Arvanitis C, Chu K, Dewey W, Leonhardt E, Trinh M, Sundberg CD, Bishop JM, Felsher DW (2002) Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science 297:102–104

    PubMed  CAS  Google Scholar 

  215. Arnold I, Watt FM (2001) c-Myc activation in transgenic mouse epidermis results in mobilization of stem cells and differentiation of their progeny. Curr Biol 11:558–568

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Wahl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wade, M., Wahl, G.M. (2006). c-Myc, Genome Instability, and Tumorigenesis: The Devil Is in the Details. In: Eisenman, R.N. (eds) The Myc/Max/Mad Transcription Factor Network. Current Topics in Microbiology and Immunology, vol 302. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32952-8_7

Download citation

Publish with us

Policies and ethics