Skip to main content

The Mlx Network: Evidence for a Parallel Max-Like Transcriptional Network That Regulates Energy Metabolism

  • Chapter
The Myc/Max/Mad Transcription Factor Network

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 302))

Abstract

Recent experiments suggest the existence of a transcriptional network that functions in parallel to the canonical Myc/Max/Mad transcriptional network. Unlike the Myc/Max/Mad network, our understanding of this network is still in its infancy. At the center of this network is a Max-like protein called Mlx; hence we have called this network the Mlx network. Like Max, Mlx interacts with transcriptional repressors and transcriptional activators, namely the Mad family and the Mondo family, respectively. Similar to Max-containing heterodimers, Mlx-containing heterodimers recognize CACGTG E-box elements, suggesting that the transcriptional targets of these two networks may overlap. Supporting this hypothesis, we have observed genetic interactions between the Drosophila melanogaster orthologs of Myc and Mondo. In higher eukaryotes, two proteins, MondoA and MondoB/CHREBP/WBSCR14, constitute the Mondo family. At present little is known about the transcriptional targets of MondoA; however, pyruvate kinase is a putative target of MondoB/CHREBP/WBSCR14, suggesting a function for the Mondo family in glucose and/or lipid metabolism. Finally, unlike the predominant nuclear localization of Myc family proteins, both Mondo family members localize to the cytoplasm. Therefore, while the Myc and Mondo families may share some biological functions, it is likely each family is under distinct regulatory control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Billin AN, Eilers AL, Queva C, Ayer DE (1999) Mlx, a novel max-like BHLHZip protein that interacts with the max network of transcription factors. J Biol Chem 274:36344–36350

    Article  PubMed  CAS  Google Scholar 

  • Billin AN, Eilers AL, Coulter KL, Logan JS, Ayer DE (2000) MondoA, a novel basic helix-loop-helix-leucine zipper transcriptional activator that constitutes a positive branch of a max-like network. Mol Cell Biol 20:8845–8854

    Article  PubMed  CAS  Google Scholar 

  • Brunet A, Kanai F, Stehn J, Xu J, Sarbassova D, Frangioni JV, Dalal SN, DeCaprio JA, Greenberg ME, Yaffe MB (2002) 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. J Cell Biol 156:817–828

    Article  PubMed  CAS  Google Scholar 

  • Cairo S, Merla G, Urbinati F, Ballabio A, Reymond A (2001) WBSCR14, a gene mapping to the Williams-Beuren syndrome deleted region, is a new member of the Mlx transcription factor network. Hum Mol Genet 10:617–627

    Article  PubMed  CAS  Google Scholar 

  • Collier JJ, Doan TT, Daniels MC, Schurr JR, Kolls JK, Scott DK (2003) c-Myc is required for the glucose-mediated induction of metabolic enzyme genes. J Biol Chem 278:6588–6595

    Article  PubMed  CAS  Google Scholar 

  • Craig RW, Buchan HL, Civin CI, Kastan MB (1993) Altered cytoplasmic/nuclear distribution of the c-myc protein in differentiating ML-1 human myeloid leukemia cells. Cell Growth Differ 4:349–357

    PubMed  CAS  Google Scholar 

  • Dang CV (1999) c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol 19:1–11

    PubMed  CAS  Google Scholar 

  • de Luis O, Valero MC, Jurado LA (2000) WBSCR14, a putative transcription factor gene deleted in Williams-Beuren syndrome: complete characterisation of the human gene and the mouse ortholog. Eur J Hum Genet 8:215–222

    Article  PubMed  Google Scholar 

  • Eilers AL, Sundwall E, Lin M, Sullivan AA, Ayer DE (2002) A novel heterodimerization domain, CRM1, and 14-3-3 control subcellular localization of the MondoA-Mlx heterocomplex. Mol Cell Biol 22:8514–8526

    Article  PubMed  CAS  Google Scholar 

  • Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J, Cocito A, Amati B (2003) Genomic targets of the human c-Myc protein. Genes Dev 17:1115–1129

    Article  PubMed  CAS  Google Scholar 

  • Ferre-D’Amare AR, Prendergast GC, Ziff EB, Burley SK (1993) Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature 363:38–45

    Article  PubMed  CAS  Google Scholar 

  • Ferre-D’Amare AR, Pognonec P, Roeder RG, Burley SK (1994) Structure and function of the b/HLH/Z domain of USF. EMBO J 13:180–189

    PubMed  CAS  Google Scholar 

  • Gallant P, Shiio Y, Cheng PF, Parkhurst SM, Eisenman RN (1996) Myc and Max homologs in Drosophila. Science 274:1523–1527

    Article  PubMed  CAS  Google Scholar 

  • Grandori C, Eisenman RN (1997) Myc target genes. Trends Biochem Sci 22:177–181

    Article  PubMed  CAS  Google Scholar 

  • Hewes RS, Schaefer AM, Taghert PH (2000) The cryptocephal gene (ATF4) encodes multiple basic-leucine zipper proteins controlling molting and metamorphosis in Drosophila. Genetics 155:1711–1723

    PubMed  CAS  Google Scholar 

  • James L, Eisenman RN (2002) Myc and Mad bHLHZip domains possess identical DNA-binding specificities but only partially overlapping functions in vivo. Proc Natl Acad Sci U S A 99:10429–10434

    Article  PubMed  CAS  Google Scholar 

  • Johnston LA, Prober DA, Edgar BA, Eisenman RN, Gallant P (1999) Drosophila myc regulates cellular growth during development. Cell 98:779–790

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi T, Takenoshita M, Kabashima T, Uyeda K (2001) Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation/dephosphorylation of the carbohydrate response element binding protein. Proc Natl Acad Sci U S A 98:13710–13715

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi T, Osatomi K, Yamashita H, Kabashima T, Uyeda K (2002) Mechanism for fatty acid “sparing” effect on glucose-induced transcription: regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase. J Biol Chem 277:3829–3835

    Article  PubMed  CAS  Google Scholar 

  • Lindsley DL, Zimm GG (1992) The genome of Drosophila melanogaster. Academic Press, San Diego, pp 1–804

    Google Scholar 

  • McMahon SB, Van Buskirk HA, Dugan KA, Copeland TD, Cole MD (1998) The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 94:363–374

    Article  PubMed  CAS  Google Scholar 

  • Meroni G, Cairo S, Merla G, Messali S, Brent R, Ballabio A, Reymond A (2000) Mlx, a new Max-like bHLHZip family member: the center stage of a novel transcription factors regulatory pathway? Oncogene 19:3266–3277

    Article  PubMed  CAS  Google Scholar 

  • Nair SK, Burley SK (2003) X-ray structures of Myc-Max and Mad-Max recognizing DNA. Molecular bases of regulation by proto-oncogenic transcription factors. Cell 112:193–205

    Article  PubMed  CAS  Google Scholar 

  • Nikiforov MA, Popov N, Kotenko I, Henriksson M, Cole MD (2003) The mad and myc basic domains are functionally equivalent. J Biol Chem 278:11094–11099

    Article  PubMed  CAS  Google Scholar 

  • O’Connell BC, Cheung AF, Simkevich CP, Tam W, Ren X, Mateyak MK, Sedivy JM (2003) A large scale genetic analysis of c-Myc-regulated gene expression patterns. J Biol Chem 278:12563–12573

    Article  PubMed  CAS  Google Scholar 

  • Okano HJ, Park WY, Corradi JP, Darnell RB (1999) The cytoplasmic Purkinje onconeural antigen cdr2 down-regulates c-Myc function: implications for neuronal and tumor cell survival. Genes Dev 13:2087–2097

    PubMed  CAS  Google Scholar 

  • Orian A, van Steensel B, Delrow J, Bussemaker HJ, Li L, Sawado T, Williams E, Loo LWM, Cowley SM, Yost C, Pierce S, Edgar BA, Parkhurst SM, Eisenman RN (2003) Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network. Genes Dev17:1101–1114

    Article  PubMed  CAS  Google Scholar 

  • Osthus RC, Shim H, Kim S, Li Q, Reddy R, Mukherjee M, Xu Y, Wonsey D, Lee LA, Dang CV (2000) Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem 275:21797–21800

    Article  PubMed  CAS  Google Scholar 

  • Peyrefitte S, Kahn D, Haenlin M (2001) New members of the Drosophila Myc transcription factor subfamily revealed by a genome-wide examination for basic helix-loop-helix genes. Mech Dev 104:99–104

    Article  PubMed  CAS  Google Scholar 

  • Riu E, Ferre T, Mas A Hidalgo A, Franckhauser S, Bosch F (2002) Overexpression of c-myc in diabetic mice restores altered expression of the transcription factor genes that regulate liver metabolism. Biochem J 368:931–937

    Article  PubMed  CAS  Google Scholar 

  • Schreiber-Agus N, Stein D, Chen K, Goltz JS, Stevens L, DePinho RA (1997) Drosophila Myc is oncogenic in mammalian cells and plays a role in the diminutive phenotype. Proc Natl Acad Sci U S A 94:1235–1240

    Article  PubMed  CAS  Google Scholar 

  • Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA, Dalla-Favera R, Dang CV (1997) c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci U S A 94:6658–6663

    Article  PubMed  CAS  Google Scholar 

  • Towbin JA, Casey B, Belmont J (1999) The molecular basis of vascular disorders. Am J Hum Genet 64:678–684

    Article  PubMed  CAS  Google Scholar 

  • Vogelstein B, Kinzler KW (1994) Has the breast cancer gene been found? Cell 79:1–3

    Article  PubMed  CAS  Google Scholar 

  • Wakamatsu Y, Watanabe Y, Shimono A, Kondoh H (1993) Transition of localization of the N-Myc protein from nucleus to cytoplasm in differentiating neurons. Neuron 10:1–9

    Article  PubMed  CAS  Google Scholar 

  • Wood MA, McMahon SB, Cole MD (2000) An ATPase/helicase complex is an essential cofactor for oncogenic transformation by c-Myc. Mol Cell 5:321–330

    Article  PubMed  CAS  Google Scholar 

  • Yamashita H, Takenoshita M, Sakurai M, Bruick RK, Henzel WJ, Shillinglaw W, Arnot D, Uyeda K (2001) A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver. Proc Natl Acad Sci U S A 98:9116–9121

    Article  PubMed  CAS  Google Scholar 

  • Yuan J, Tirabassi RS, Bush AB, Cole MD (1998) The C. elegans MDL-1 and MXL-1 proteins can functionally substitute for vertebrate MAD and MAX. Oncogene 17:1109–1118

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Ayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Billin, A.N., Ayer, D.E. (2006). The Mlx Network: Evidence for a Parallel Max-Like Transcriptional Network That Regulates Energy Metabolism. In: Eisenman, R.N. (eds) The Myc/Max/Mad Transcription Factor Network. Current Topics in Microbiology and Immunology, vol 302. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32952-8_10

Download citation

Publish with us

Policies and ethics