Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 302))

Abstract

Myc regulates to some degree every major process in the cell. Proliferation, growth, differentiation, apoptosis, and metabolism are all under Myc control. In turn, these processes feed back to adjust the level of c-myc expression. Although Myc is regulated at every level from RNA synthesis to protein degradation, c-myc transcription is particularly responsive to multiple diverse physiological and pathological signals. These signals are delivered to the c-myc promoter by a wide variety of transcription factors and chromatin remodeling complexes. How these diverse and sometimes disparate signals are processed to manage the output of the c-myc promoter involves chromatin, recruitment of the transcription machinery, post-initiation transcriptional regulation, and mechanisms to provide dynamic feedback. Understanding these mechanisms promises to add new dimensions to models of transcriptional control and to reveal new strategies to manipulate Myc levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akoulitchev S, Chuikov S, Reinberg D (2000) TFIIH is negatively regulated by cdk8-containing mediator complexes. Nature 407:102–106

    Article  PubMed  CAS  Google Scholar 

  • Albert T, Mautner J, Funk JO, Hortnagel K, Pullner A, Eick D (1997) Nucleosomal structures of c-myc promoters with transcriptionally engaged RNA polymerase II. Mol Cell Biol 17:4363–4371

    PubMed  CAS  Google Scholar 

  • Albert T, Wells J, Funk JO, Pullner A, Raschke EE, Stelzer G, Meisterernst I, Farnham PJ, Eick D (2001) The chromatin structure of the dual c-myc promoter P1/P2 is regulated by separate elements. J Biol Chem 276:20482–20490

    Article  PubMed  CAS  Google Scholar 

  • Arcinas M, Heckman CA, Mehew JW, Boxer LM (2001) Molecular mechanisms of transcriptional control of bcl-2 and c-myc in follicular and transformed lymphoma. Cancer Res 61:5202–5206

    PubMed  CAS  Google Scholar 

  • Benham CJ (1992) Energetics of the strand separation transition in superhelical DNA. J Mol Biol 225:835–847

    Article  PubMed  CAS  Google Scholar 

  • Bergemann A, Johnson E (1992) The HeLa Pur factor binds single-stranded DNA at a specific element conserved in gene flanking regions and origins of DNA replication. Mol Cell Biol 12:1257–1265

    PubMed  CAS  Google Scholar 

  • Bomsztyk K, Van Seuningen I, Suzuki H, Denisenko O, Ostrowski J (1997) Diverse molecular interactions of the hnRNP K protein. FEBS Lett 403:113–115

    Article  PubMed  CAS  Google Scholar 

  • Bossone SA, Asselin C, Patel AJ, Marcu KB (1992) MAZ, a zinc finger protein, binds to c-MYC and C2 gene sequences regulating transcriptional initiation and termination. Proc Natl Acad Sci U S A 89:7452–7456

    PubMed  CAS  Google Scholar 

  • Bowman T, Broome MA, Sinibaldi D, Wharton W, Pledger WJ, Sedivy JM, Irby R, Yeatman T, Courtneidge SA, Jove R (2001) Stat3-mediated Myc expression is required for Src transformation and PDGF-induced mitogenesis. Proc Natl Acad Sci U S A 98:7319–7324

    Article  PubMed  CAS  Google Scholar 

  • Braddock DT, Baber JL, Levens D, Clore GM (2002a) Molecular basis of sequence-specific single-stranded DNA recognition by KH domains: solution structure of a complex between hnRNP K KH3 and single-stranded DNA. EMBO J 21:3476–3485

    Article  PubMed  CAS  Google Scholar 

  • Braddock DT, Louis JM, Baber JL, Levens D, Clore GM (2002b) Structure and dynamics of KH domains from FBP bound to single-stranded DNA. Nature 415:1051–1056

    Article  PubMed  CAS  Google Scholar 

  • Brewer G (1999) Evidence for a 3′–5′ decay pathway for c-myc mRNA in mammalian cells. J Biol Chem 274:16174–16179

    Article  PubMed  CAS  Google Scholar 

  • Broome HE, Reed JC, Godillot EP, Hoover RG (1987) Differential promoter utilization by the c-Myc gene in mitogen-2-stimulated and interleukin-2-stimulated human-lymphocytes. Mol Cell Biol 7:2988–2993

    PubMed  CAS  Google Scholar 

  • Bryant GO, Ptashne M (2003) Independent recruitment in vivo by Gal4 of two complexes required for transcription. Mol Cell 11:1301–1309

    Article  PubMed  CAS  Google Scholar 

  • Cai S, Han HJ, Kohwi-Shigematsu T (2003) Tissue-specific nuclear architecture and gene expression regulated by SATB1. Nat Genet 34:42–51

    Article  PubMed  CAS  Google Scholar 

  • Caruthers JM, McKay DB (2002) Helicase structure and mechanism. Curr Opin Struct Biol 12:123–133

    Article  PubMed  CAS  Google Scholar 

  • Chambers AE, Banerjee S, Chaplin T, Dunne J, Debernardi S, Joel SP, Young BD (2003) Histone acetylation-mediated regulation of genes in leukaemic cells. Eur J Cancer 39:1165–1175

    Article  PubMed  CAS  Google Scholar 

  • Chen CR, Kang YB, Siegel PM, Massagué J (2002) E2F4/5 and p107 as Smad cofactors linking the TGFβ receptor to c-myc repression. Cell 110:19–32

    Article  PubMed  CAS  Google Scholar 

  • Chen DS, Riedl T, Washbrook E, Pace PE, Coombes RC, Egly JM, Ali S (2000) Activation of estrogen receptor alpha by S118 phosphorylation involves a ligand-dependent interaction with TFIIH and participation of CDK7. Mol Cell 6:127–137

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Liang Y, Deng W, Shimizu K, Ashique AM, Li E, Li YP (2003) The zinc-finger protein CNBP is required for forebrain formation in the mouse. Development 130:1367–1379

    Article  PubMed  CAS  Google Scholar 

  • Chernukhin IV, Shamsuddin S, Robinson AF, Carne AF, Paul A, El-Kady AI, Lobanenkov VV, Klenova EM (2000) Physical and functional interaction between two pluripotent proteins, the Y-box DNA/RNA-binding factor, YB-1, and the multivalent zinc finger factor, CTCF. J Biol Chem 275:29915–29921

    Article  PubMed  CAS  Google Scholar 

  • Chi TH, Wan M, Lee P, Akashi K, Metzger D, Chambon P, Wilson CB, Crabtree GR (2003) Sequential roles of Brg, the ATPase subunit of BAF chromatin remodeling complexes, in thymocyte development. Immunity 19:169–182

    Article  PubMed  CAS  Google Scholar 

  • Cippitelli M, Fionda C, Di Bona D, Lupo A, Piccoli M, Frati L, Santoni A (2003) The cyclopentenone-type prostaglandin 15-deoxy-delta-12,14-prostaglandin J2 Inhibits CD95 ligand gene expression in T lymphocytes: interference with promoter activation via peroxisome proliferator-activated receptor-gamma-independent mechanisms. J Immunol 170:4578–4592

    PubMed  CAS  Google Scholar 

  • Coin F, Egly JM (1998) Ten years of TFIIH. Cold Spring Harb Symp Quant Biol 63:105–110

    Article  PubMed  CAS  Google Scholar 

  • Cole MD, Mango SE (1990) cis-Acting determinants of c-myc mRNA stability. Enzyme 44:167–180

    PubMed  CAS  Google Scholar 

  • Cramer P, Bushnell DA, Fu JH, Gnatt AL, Maier-Davis B, Thompson NE, Burgess RR, Edwards AM, David PR, Kornberg RD (2000) Architecture of RNA polymerase II and implications for the transcription mechanism. Science 288:640–649

    Article  PubMed  CAS  Google Scholar 

  • Creancier L, Mercier P, Prats AC, Morello D (2001) c-myc Internal ribosome entry site activity is developmentally controlled and subjected to a strong translational repression in adult transgenic mice. Mol Cell Biol 21:1833–1840

    Article  PubMed  CAS  Google Scholar 

  • Crosio C, Boyl PP, Loreni F, Pierandrei-Amaldi P, Amaldi F (2000) La protein has a positive effect on the translation of TOP mRNAs in vivo. Nucleic Acids Res 28:2927–2934

    Article  PubMed  CAS  Google Scholar 

  • Dani C, Mechti N, Piechaczyk M, Lebleu B, Jeanteur P, Blanchard JM (1985) Increased rate of degradation of c-Myc messenger-RNA in interferon-treated daudi cells. Proc Natl Acad Sci U S A 82:4896–4899

    PubMed  CAS  Google Scholar 

  • Davis AC, Wims M, Spotts GD, Hann SR, Bradley A (1993) A null c-Myc mutation causes lethality before 10.5 days of gestation in homozygotes and reduced fertility in heterozygous female mice. Genes Dev 7:671–682

    PubMed  CAS  Google Scholar 

  • Davis TL, Firulli AB, Kinniburgh AJ (1989) Ribonucleoprotein and protein factors bind to an H-DNA-forming c-myc DNA element: possible regulators of the c-myc gene. Proc Natl Acad Sci U S A 86:9682–9686

    PubMed  CAS  Google Scholar 

  • Davis-Smyth T, Duncan RC, Zheng T, Michelotti G, Levens D (1996) The far upstream element-binding proteins comprise an ancient family of single-strand DNA-binding transactivators. J Biol Chem 271:31679–31687

    Article  PubMed  CAS  Google Scholar 

  • de Nigris F, Mega T, Berger N, Barone MV, Santoro M, Viglietto G, Verde P, Fusco A (2001) Induction of ETS-1 and ETS-2 Transcription Factors Is Required for Thyroid Cell Transformation. Cancer Res 61:2267–2275

    PubMed  Google Scholar 

  • Dean M, Levine RA, Ran W, Kindy MS, Sonenshein GE, Campisi J (1986) Regulation of c-myc transcription and mRNA abundance by serum growth factors and cell contact. J Biol Chem 261:9161–9166

    PubMed  CAS  Google Scholar 

  • DesJardins E, Hay N (1993) Repeated CT elements bound by zinc finger proteins control the absolute and relative activities of the two principal human c-myc promoters. Mol Cell Biol 13:5710–5724

    PubMed  CAS  Google Scholar 

  • Dickinson LA, Joh T, Kohwi Y, Kohwishigematsu T (1992) A tissue-specific Mar/Sar DNA-binding protein with unusual binding-site recognition. Cell 70:631–645

    Article  PubMed  CAS  Google Scholar 

  • Dickinson LA, Dickinson CD, Kohwi-Shigematsu T (1997) An atypical homeodomain in SATB1 promotes specific recognition of the key structural element in a matrix attachment region. J Biol Chem 272:11463–11470

    Article  PubMed  CAS  Google Scholar 

  • Douziech M, Coin F, Chipoulet JM, Arai Y, Ohkuma Y, Egly JM, Coulombe B (2000) Mechanism of promoter melting by the xeroderma pigmentosum complementation group B helicase of transcription factor IIH revealed by protein-DNA photocross-linking. Mol Cell Biol 20:8168–8177

    Article  PubMed  CAS  Google Scholar 

  • Dubik D, Shiu RPC (1992) Mechanism of estrogen activation of c-myc oncogene expression. Oncogene 7:1587–1594

    PubMed  CAS  Google Scholar 

  • Dufort D, Nepveu A (1994) The human cut homeodomain protein represses transcription from the c-myc promoter. Mol Cell Biol 14:4251–4257

    PubMed  CAS  Google Scholar 

  • Duncan R, Collins I, Tomonaga T, Zhang T, Levens D (1996) A unique transactivation sequence motif is found in the carboxyl-terminal domain of the single-strand-binding protein FBP. Mol Cell Biol 16:2274–2282

    PubMed  CAS  Google Scholar 

  • Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297:1183–1186

    Article  PubMed  CAS  Google Scholar 

  • Evingerhodges MJ, Bresser J, Brouwer R, Cox I, Spitzer G, Dicke K (1988) Myc and Sis expression in acute myelogenous leukemia. Leukemia 2:45–49

    CAS  Google Scholar 

  • Facchini LM, Chen S, Marhin WW, Lear JN, Penn LZ (1997) The Myc negative autoregulation mechanism requires Myc-Max association and involves the c-myc P2 minimal promoter. Mol Cell Biol 17:100–114

    PubMed  CAS  Google Scholar 

  • Filippova GN, Fagerlie S, Klenova EM, Myers C, Dehner Y, Goodwin G, Neiman PE, Collins SJ, Lobanenkov VV (1996) An exceptionally conserved transcriptional repressor, CTCF, employs different combinations of zinc fingers to bind diverged promoter sequences of avian and mammalian c-myc oncogenes. Mol Cell Biol 16:2802–2813

    PubMed  CAS  Google Scholar 

  • Frit P, Bergmann E, Egly JM (1999) Transcription factor IIH: a key player in the cellular response to DNA damage. Biochimie 81:27–38

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto M, Matsumoto K-i, Iguchi-Ariga SMM, Ariga H (2001) Disruption of MSSP, c-myc single-strand binding protein, leads to embryonic lethality in some homozygous mice. Genes Cells 6:1067–1075

    Article  PubMed  CAS  Google Scholar 

  • Fye RM, Benham CJ (1999) Exact method for numerically analyzing a model of local denaturation in superhelically stressed DNA. Phys Rev E 59:3408–3426

    Article  CAS  Google Scholar 

  • Garber ME, Wei P, Kewal Ramani VN, Mayall TP, Herrmann CH, Rice AP, Littman DR, Jones KA (1998) The interaction between HIV-1 Tat and human cyclin T1 requires zinc and a critical cysteine residue that is not conserved in the murine Cyc T1 protein. Genes Dev 12:3512–3527

    PubMed  CAS  Google Scholar 

  • Geltinger C, Hortnagel K, Polack A (1996) TATA box and Sp1 sites mediate the activation of c-myc promoter P1 by immunoglobulin kappa enhancers. Gene Expr 6:113–127

    PubMed  CAS  Google Scholar 

  • Gnatt AL, Cramer P, Fu JH, Bushnell DA, Kornberg RD (2001) Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 angstrom resolution. Science 292:1876–1882

    Article  PubMed  CAS  Google Scholar 

  • Grandori C, Cowley SM, James LP, Eisenman RN (2000) The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 16:653–699

    Article  PubMed  CAS  Google Scholar 

  • Gronostajski RM(2000) Roles of the NFI/CTF gene family in transcription and development. Gene 249:31–45

    Google Scholar 

  • Grumont RJ, Strasser A, S G (2002) B cell growth is controlled by phosphatidylinosotol 3-kinase-dependent induction of Rel/NF-kappaB regulated c-myc transcription. Mol Cell 10:1283–1294

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Anthony A, Pernis AB (2001) Stage-specific modulation of IFN-regulatory factor 4 function by kruppel-type zinc finger proteins. J Immunol 166:6104–6111

    PubMed  CAS  Google Scholar 

  • Hann SR, Eisenman RN (1984) Proteins encoded by the human c-Myc oncogene—differential expression in neoplastic-cells. Mol Cell Biol 4:2486–2497

    PubMed  CAS  Google Scholar 

  • Harris VK, Coticchia CM, List H-J, Wellstein A, Riegel AT (2000) Mitogen-induced expression of the fibroblast growth factor-binding protein is transcriptionally repressed through a non-canonical E-box element. J Biol Chem 275:28539–28548

    Article  PubMed  CAS  Google Scholar 

  • Hartsough MT, Steeg PS (2000) Nm23/nucleoside diphosphate kinase in human cancers. J Bioenerg Biomembr 32:301–308

    Article  PubMed  CAS  Google Scholar 

  • Hay N, Bishop JM, Levens D (1987) Regulatory elements that modulate expression of human c-Myc. Genes Dev 1:659–671

    PubMed  CAS  Google Scholar 

  • He LS, Liu JH, Collins I, Sanford S, O’Connell B, Benham CJ, Levens D (2000) Loss of FBP function arrests cellular proliferation and extinguishes c-myc expression. EMBO J 19:1034–1044

    Article  PubMed  CAS  Google Scholar 

  • He T-C, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512

    Article  PubMed  CAS  Google Scholar 

  • Hermonat PL (1994) Down-regulation of the human c-fos and c-myc proto-oncogene promoters by adeno-associated virus Rep78. Cancer Lett 81:129–136

    Article  PubMed  CAS  Google Scholar 

  • Hernandez N, Pessler F (2003) Flexible DNA binding of the BTB/POZ-domain protein FBI-1. J Biol Chem 278:29327–29335

    Article  PubMed  CAS  Google Scholar 

  • Hewitt SM HS, McDonnell TJ, Rauscher FJ 3rd, Saunders GF (1995) Regulation of the proto-oncogenes bcl-2 and c-myc by the Wilms’ tumor suppressor gene WT1. Cancer Res 55:5386–5389

    PubMed  CAS  Google Scholar 

  • Hoeijmakers JH, Egly JM, Vermeulen W (1996) TFIIH: a key component in multiple DNA transactions. Curr Opin Genet Dev 6:26–33

    Article  PubMed  CAS  Google Scholar 

  • Iakova P, Awad SS, Timchenko NA (2003) Aging reduces proliferative capacities of liver by switching pathways of C/EBPalpha growth arrest. Cell 113:495–506

    Article  PubMed  CAS  Google Scholar 

  • Jeay S, Sonenshein GE, Kelly PA, Postel-Vinay MC, Baixeras E (2001) Growth hormone exerts antiapoptotic and proliferative effects through two different pathways involving nuclear factor-kappaB and phosphatidylinositol 3-kinase. Endocrinology 142:147–156

    Article  PubMed  CAS  Google Scholar 

  • Jenab S, Morris PL (1997) Transcriptional regulation of Sertoli cell immediate early genes by interleukin-6 and interferon-gamma is mediated through phosphorylation of STAT-3 and STAT-1 proteins. Endocrinology 138:2740–2746

    Article  PubMed  CAS  Google Scholar 

  • Johansen LM, Iwama A, Lodie TA, Sasaki K, Felsher DW, Golub TR, Tenen DG (2001) c-Myc is a critical target for C/EBPalpha in granulopoiesis. Mol Cell Biol 21:3789–3806

    Article  PubMed  CAS  Google Scholar 

  • Kahn JD, Yun E, Crothers DM (1994) Detection of localized DNA flexibility. Nature 368:163–166

    Article  PubMed  CAS  Google Scholar 

  • Kaplan J, Calame K (1997) The ZiN/POZ domain of ZF5 is required for both transcriptional activation and repression. Nucleic Acids Res 25:1108–1116

    Article  PubMed  CAS  Google Scholar 

  • Katayama ML, Pasini FS, Folgueira MA, Snitcovsky IM, Brentani MM (2003) Molecular targets of 1,25(OH)2D3 in HC11 normal mouse mammary cell line. J Steroid Biochem Mol Biol 84:57–69

    Article  PubMed  CAS  Google Scholar 

  • Keriel A, Stary A, Sarasin A, Rochette-Egly C, Egly JM (2002) XPD mutations prevent TFIIH-dependent transactivation by nuclear receptors and phosphorylation of RAR alpha. Cell 109:125–135

    Article  PubMed  CAS  Google Scholar 

  • Kiermaier A GJ, Desbarats L, Saffrich R, Ansorge W, Farrell PJ, Eilers M, Packham G (1999) DNA binding of USF is required for specific E-box dependent gene activation in vivo. Oncogene 18:7200–7211

    Article  PubMed  CAS  Google Scholar 

  • Kim JY, Kang YS, Lee JW, Kim HJ, Ahn YH, Park H, Ko YG, Kim S (2002) p38 is essential for the assembly and stability of macromolecular tRNA synthetase complex: implications for its physiological significance. Proc Natl Acad Sci U S A 99:7912–7916

    Article  PubMed  CAS  Google Scholar 

  • Kim MJ, Park BJ, Kang YS, Kim HJ, Park JH, Kang JW, Lee SW, Han JM, Lee HW, Kim S (2003a) Downregulation of FUSE-binding protein and c-myc by tRNA synthetase cofactor p38 is required for lung cell differentiation. Nat Genet 34:330–336

    Article  PubMed  CAS  Google Scholar 

  • Kim SY, Herbst A, Tworkowski KA, Salghetti SE, Tansey WP (2003b) Skp2 regulates Myc protein stability and activity. Mol Cell 11:1177–1188

    Article  PubMed  CAS  Google Scholar 

  • Kim TK, Ebright RH, Reinberg D (2000) Mechanism of ATP-dependent promoter melting by transcription factor IIH. Science 288:1418–1421

    Article  PubMed  CAS  Google Scholar 

  • Kinniburgh AJ (1989) A cis-acting transcription element of the c-myc gene can assume an H-DNA conformation. Nucleic Acids Res 17:7771–7778

    PubMed  CAS  Google Scholar 

  • Kloks CP, Spronk CA, Lasonder E, Hoffmann A, Vuister GW, Grzesiek S, Hilbers CW (2002) The solution structure and DNA-binding properties of the cold-shock domain of the human Y-box protein YB-1. J Mol Biol 316:317–326

    Article  PubMed  CAS  Google Scholar 

  • Kowalik TF (2002)Smad about E2F. TGFbeta repression of c-Myc via a Smad3/E2F/p107 complex. Mol Cell 10:7–8

    Article  PubMed  CAS  Google Scholar 

  • Krumm A, Hickey LB, Groudine M (1995) Promoter-proximal pausing of RNa-polymerase-Ii defines a general rate-limiting step after transcription initiation. Genes Dev 9:559–572

    PubMed  CAS  Google Scholar 

  • Kugel JF, Goodrich JA (1998) Promoter escape limits the rate of RNA polymerase II transcription and is enhanced by TFIIE, TFIIH, and ATP on negatively supercoiled DNA. Proc Natl Acad Sci U S A 95:9232–9237

    Article  PubMed  CAS  Google Scholar 

  • Kurisaki K, Kurisaki A, Valcourt U, Terentiev AA, Pardali K, ten Dijke P, Heldin C-H, Ericsson J, Moustakas A (2003) Nuclear factor YY1 inhibits transforming growth factor beta-and bone morphogenetic protein-induced cell differentiation. Mol Cell Biol 23:4494–4510

    Article  PubMed  CAS  Google Scholar 

  • Laird-Offringa IA (1992) What determines the instability of c-myc proto-oncogene mRNA? Bioessays 14:119–124

    Article  PubMed  CAS  Google Scholar 

  • Lavenu A, Pournin S, Babinet C, Morello D (1994) The cis-acting elements known to regulate c-Myc expression ex-vivo are not sufficient for correct transcription in-vivo. Oncogene 9:527–536

    PubMed  CAS  Google Scholar 

  • Lavenu A, Pistoi S, Pournin S, Babinet C, Morello D (1995) Both coding exons of the c-myc gene contribute to its posttranscriptional regulation in the quiescent liver and regenerating liver and after protein synthesis inhibition. Mol Cell Biol 15:4410–4419

    PubMed  CAS  Google Scholar 

  • Lee H, Guo Y, Ohta M, Xiong LM, Stevenson B, Zhu JK (2002) LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. EMBO J 21:2692–2702

    Article  PubMed  CAS  Google Scholar 

  • Lemm I, Ross J (2002) Regulation of c-myc mRNA decay by translational pausing in a coding region instability determinant. Mol Cell Biol 22:3959–3969

    Article  PubMed  CAS  Google Scholar 

  • Levens D (2002) Disentangling the MYC web. Proc Natl Acad Sci U S A 99:5757–5759

    Article  PubMed  CAS  Google Scholar 

  • Levens DL (2003) Reconstructing MYC. Genes Dev 17:1071–1077

    Article  PubMed  CAS  Google Scholar 

  • Lin Y, Wong K-k, Calame K (1997) Repression of c-myc transcription by Blimp-1, an inducer of terminal B cell differentiation. Science 276:596–599

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Malott M, Leffak M (2003) Multiple functional elements comprise a mammalian chromosomal replicator. Mol Cell Biol 23:1832–1842

    Article  PubMed  CAS  Google Scholar 

  • Liu JH, He LS, Collins I, Ge H, Libutti D, Li JF, Egly JM, Levens D (2000) The FBP interacting repressor targets TFIIH to inhibit activated transcription. Mol Cell 5:331–341

    Article  PubMed  CAS  Google Scholar 

  • Liu JH, Akoulitchev S, Weber A, Ge H, Chuikov S, Libutti D, Wang XW, Conaway JW, Harris CC, Conaway RC, Reinberg D, Levens D (2001) Defective interplay of activators and repressors with TFIIH in xeroderma pigmentosum. Cell 104:353–363

    Article  PubMed  CAS  Google Scholar 

  • Lockhart DJ, Winzeler EA (2000) Genomics, gene expression and DNA arrays. Nature 405:827–836

    Article  PubMed  CAS  Google Scholar 

  • Lutz M, Burke LJ, LeFevre P, Myers FA, Thorne AW, Crane-Robinson C, Bonifer C, Filippova GN, Lobanenkov V, Renkawitz R (2003) Thyroid hormone-regulated enhancer blocking: cooperation of CTCF and thyroid hormone receptor. EMBO J 22:1579–1587

    Article  PubMed  CAS  Google Scholar 

  • Lutz W, Leon J, Eilers M (2002) Contributions of Myc to tumorigenesis. Biochim Biophys Acta 1602:61–71

    PubMed  CAS  Google Scholar 

  • Madisen L, Krumm A, Hebbes TR, Groudine M (1998) The immunoglobulin heavy chain locus control region increases histone acetylation along linked c-myc genes. Mol Cell Biol 18:6281–6292

    PubMed  CAS  Google Scholar 

  • Majello B, De Luca P, Lania L (1997) Sp3 is a bifunctional transcription regulator with modular independent activation and repression domains. J Biol Chem 272:4021–4026

    Article  PubMed  CAS  Google Scholar 

  • Marcu KB, Bossone SA, Patel AJ (1992) Myc function and regulation. Annu Rev Biochem 61:809–860

    Article  PubMed  CAS  Google Scholar 

  • Mateyak MK, Obaya AJ, Adachi S, Sedivy JM (1997) Phenotypes of c-myc-deficient rat fibroblasts isolated by targeted homologous recombination. Cell Growth Differ 8:1039–1048

    PubMed  CAS  Google Scholar 

  • Mautner J, Joos S, Werner T, Eick D, Bornkamm GW, Polack A (1995) Identification of two enhancer elements downstream of the human c-myc gene. Nucleic Acids Res 23:72–80

    PubMed  CAS  Google Scholar 

  • Mautner J, Behrends U, Hortnagel K, Brielmeier M, Hammerschmidt W, Strobl L, Bornkamm GW, Polack A (1996) c-myc expression is activated by the immunoglobulin kappa-enhancers from a distance of at least 30 kb but not by elements located within 50 kb of the unaltered c-myc locus in vivo. Oncogene 12:1299–1307

    PubMed  CAS  Google Scholar 

  • McNally JG, Muller WG, Walker D, Wolford R, Hager GL (2000) The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science 287:1262–1265

    Article  PubMed  CAS  Google Scholar 

  • Michelotti EF, Tomonaga T, Krutzsch H, Levens D (1995) Cellular nucleic-acid binding-protein regulates the Ct element of the human c-Myc protooncogene. J Biol Chem 270:9494–9499

    Article  PubMed  CAS  Google Scholar 

  • Michelotti EF, Michelotti GA, Aronsohn AI, Levens D (1996a) Heterogeneous nuclear ribonucleoprotein K is a transcription factor. Mol Cell Biol 16:2350–2360

    PubMed  CAS  Google Scholar 

  • Michelotti EF, Sanford S, Freije JM, MacDonald NJ, Steeg PS, Levens D (1997) Nm23/PuF does not directly stimulate transcription through the CT element in vivo. J Biol Chem 272:22526–22530

    Article  PubMed  CAS  Google Scholar 

  • Michelotti GA, Michelotti EF, Pullner A, Duncan RC, Eick D, Levens D (1996b) Multiple single-stranded cis elements are associated with activated chromatin of the human c-myc gene in vivo. Mol Cell Biol 16:2656–2669

    PubMed  CAS  Google Scholar 

  • Morales V, Richard-Foy H (2000) Role of histone N-terminal tails and their acetylation in nucleosome dynamics. Mol Cell Biol 20:7230–7237

    Article  PubMed  CAS  Google Scholar 

  • Norton VG, Marvin KW, Yau P, Bradbury EM (1990) Nucleosome linking number change controlled by acetylation of histones H3 and H4. J Biol Chem 265:19848–19852

    PubMed  CAS  Google Scholar 

  • Numoto M, Niwa O, Kaplan J, Wong KK, Merrell K, Kamiya K, Yanagihara K, Calame K (1993) Transcriptional repressor ZF5 identifies a new conserved domain in zinc finger proteins. Nucleic Acids Res 21:3767–3775

    PubMed  CAS  Google Scholar 

  • Ogawa H, Ishiguro K, Gaubatz S, Livingston DM, Nakatani Y (2002) A complex with chromatin modifiers that occupies E2F-and Myc-responsive genes in G0 cells. Science 296:1132–1136

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma Y (1997) Multiple functions of general transcription factors TFIIE and TFIIH in transcription: possible points of regulation by trans-acting factors. J Biochem (Tokyo) 122:481–489

    PubMed  CAS  Google Scholar 

  • Ohlsson R, Renkawitz R, Lobanenkov V (2001) CTCF is a uniquely versatile transcription regulator linked to epigenetics and disease. Trends Genet 17:520–527

    Article  PubMed  CAS  Google Scholar 

  • Pal M, McKean D, Luse DS (2001) Promoter clearance by RNA polymerase II is an extended, multistep process strongly affected by sequence. Mol Cell Biol 21:5815–5825

    Article  PubMed  CAS  Google Scholar 

  • Pasqualucci L, Neumeister P, Goossens T, Nanjangud G, Chaganti RS, Kuppers R, Dalla-Favera R (2001) Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 412:341–346

    Article  PubMed  CAS  Google Scholar 

  • Pearson A, Greenblatt J (1997) Modular organization of the E2F1 activation domain and its interaction with general transcription factors TBP and TFIIH. Oncogene 15:2643–2658

    Article  PubMed  CAS  Google Scholar 

  • Pei L (2001) Identification of c-myc as a Down-stream target for pituitary tumor-transforming gene. J Biol Chem 276:8484–8491

    Article  PubMed  CAS  Google Scholar 

  • Peifer M (2002) Developmental biology: colon construction. Nature 420:274–275

    Article  PubMed  CAS  Google Scholar 

  • Pellizzoni L, Lotti F, Maras B, Pierandrei-Amaldi P (1997) Cellular nucleic acid binding protein binds a conserved region of the 5′ UTR of Xenopus laevis ribosomal protein mRNAs. J Mol Biol 267:264–275

    Article  PubMed  CAS  Google Scholar 

  • Perez-Juste G, Garcia-Silva S, Aranda A (2000) An element in the region responsible for premature termination of transcription mediates repression of c-myc gene expression by thyroid hormone in neuroblastoma cells. J Biol Chem 275:1307–1314

    Article  PubMed  CAS  Google Scholar 

  • Postel EH (1992) Modulation of c-myc transcription by triple helix formation. Ann N Y Acad Sci 660:57–63

    PubMed  CAS  Google Scholar 

  • Postel EH, Berberich SJ, Rooney JW, Kaetzel DM (2000) Human NM23/nucleoside diphosphate kinase regulates gene expression through DNA binding to nuclease-hypersensitive transcriptional elements. J Bioenerg Biomembr 32:277–284

    Article  PubMed  CAS  Google Scholar 

  • Pullner A, Mautner J, Albert T, Eick D (1996) Nucleosomal structure of active and inactive c-myc genes. J Biol Chem 271:31452–31457

    Article  PubMed  CAS  Google Scholar 

  • Qi CF, Martensson A, Mattioli M, Dalla-Favera R, Lobanenkov VV, Morse HC (2003) CTCF functions as a critical regulator of cell-cycle arrest and death after ligation of the B cell receptor on immature B cells. Proc Natl Acad Sci U S A 100:633–638

    Article  PubMed  CAS  Google Scholar 

  • Quinn LM, Dickins RA, Coombe M, Hime GR, Bowtell DD, Richardson H (2004) Drosophila Hfp negatively regulates dmyc and stg to inhibit cell proliferation. Development 131:1411–1423

    Article  PubMed  CAS  Google Scholar 

  • Rabbitts PH, Watson JV, Lamond A, Forster A, Stinson MA, Evan G, Fischer W, Atherton E, Sheppard R, Rabbitts TH (1985) Metabolism of C-Myc gene-products—C-Myc messenger-RNA and protein expression in the cell-cycle. EMBO J 4:2009–2015

    PubMed  CAS  Google Scholar 

  • Rajavashisth TB, Taylor AK, Andalibi A, Svenson KL, Lusis AJ (1989) Identification of a zinc finger protein that binds to the sterol regulatory element. Science 245:640–643

    PubMed  CAS  Google Scholar 

  • Rao A, Luo C, Hogan PG (1997) Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol 15:707–747

    Article  PubMed  CAS  Google Scholar 

  • Ray R, Miller DM (1991) Cloning and characterization of a human c-myc promoter-binding protein. Mol Cell Biol 11:2154–2161

    PubMed  CAS  Google Scholar 

  • Ray R, Steele R, Seftor E, Hendrix M (1995) Human breast carcinoma cells transfected with the gene encoding a c-myc promoter-binding protein (MBP-1) inhibits tumors in nude mice. Cancer Res 55:3747–3751

    PubMed  CAS  Google Scholar 

  • Reya T, O’Riordan M, Okamura R, Devaney E, Willert K, Nusse R, Grosschedl R (2000) Wnt signaling regulates B lymphocyte proliferation through a LEF-1 dependent mechanism. Immunity 13:15–24

    Article  PubMed  CAS  Google Scholar 

  • Rich A, Zhang S (2003) Timeline: Z-DNA: the long road to biological function. Nat Rev Genet 4:566–572

    Article  PubMed  CAS  Google Scholar 

  • Riggs K, Saleque S, Wong K, Merrell K, Lee J, Shi Y, Calame K (1993) Yin-yang 1 activates the c-myc promoter. Mol Cell Biol 13:7487–7495

    PubMed  CAS  Google Scholar 

  • Robert F, Douziech M, Forget D, Egly JM, Greenblatt J, Burton ZF, Coulombe B (1998) Wrapping of promoter DNA around the RNA polymerase II initiation complex induced by TFIIF. Mol Cell 2:341–351

    Article  PubMed  CAS  Google Scholar 

  • Roix JJ, McQueen PG, Munson PJ, Parada LA, Misteli T (2003) Spatial proximity of translocation-prone gene loci in human lymphomas. Nat Genet 34:287–291

    Article  PubMed  CAS  Google Scholar 

  • Rougvie AE, Lis JT (1988) The RNA polymerase-Ii molecule at the 5′ end of the uninduced Hsp70 gene of drosophila-melanogaster is transcriptionally engaged. Cell 54:795–804

    Article  PubMed  CAS  Google Scholar 

  • Roussel MF, Davis JN, Cleveland JL, Ghysdael J, Hiebert SW (1994) Dual control of myc expression through a single DNA binding site targeted by ets family proteins and E2F-1. Oncogene 9:405–415

    PubMed  CAS  Google Scholar 

  • Roymans D, Willems R, Van Blockstaele DR, Slegers H (2002) Nucleoside diphosphate kinase (NDPK/NM23) and the waltz with multiple partners: possible consequences in tumor metastasis. Clin Exp Metastasis 19:465–476

    Article  PubMed  CAS  Google Scholar 

  • Saez AI, Artiga MJ, Romero C, Rodriguez S, Cigudosa JC, Perez-Rosado A, Fernandez I, Sanchez-Beato M, Sanchez E, Mollejo M, Piris MA (2003) Development of a real-time reverse transcription polymerase chain reaction assay for c-myc expression that allows the identification of a subset of c-myc plus diffuse large B-cell lymphoma. Lab Invest 83:143–152

    PubMed  CAS  Google Scholar 

  • Sakatsume O, Tsutsui H, Wang Y, Gao H, Tang X, Yamauchi T, Murata T, Itakura K, Yokoyama KK (1996) Binding of THZif-1, a MAZ-like zinc finger protein to the nuclease-hypersensitive element in the promoter region of the c-MYC protooncogene. J Biol Chem 271:31322–31333

    Article  PubMed  CAS  Google Scholar 

  • Schmidt M, Nazarov V, Stevens L, Watson R, Wolff L (2000) Regulation of the resident chromosomal copy of c-myc by c-Myb is involved in myeloid leukemogenesis. Mol Cell Biol 20:1970–1981

    Article  PubMed  CAS  Google Scholar 

  • Schorl C, Sedivy JM (2003) Loss of protooncogene c-Myc function impedes G(1) phase progression both before and after the restriction point. Mol Biol Cell 14:823–835

    Article  PubMed  CAS  Google Scholar 

  • Schuhmacher M, Staege MS, Pajic A, Polack A, Weidle UH, Bornkamm GW, Eick D, Kohlhuber F (1999) Control of cell growth by c-Myc in the absence of cell division. Curr Biol 9:1255–1258

    Article  PubMed  CAS  Google Scholar 

  • Sears R, Leone G, DeGregori J, Nevins JR (1999) Ras enhances Myc protein stability. Mol Cell 3:169–179

    Article  PubMed  CAS  Google Scholar 

  • Shaffer AL, Rosenwald A, Hurt EM, Giltnane JM, Lam LT, Pickeral OK, Staudt LM (2001) Signatures of the immune response. Immunity 15:375–385

    Article  PubMed  CAS  Google Scholar 

  • Shang Y, Hu X, DiRenzo J, Lazar MA, Brown M (2000) Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 103:843–852

    Article  PubMed  CAS  Google Scholar 

  • Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4:E131–E136

    Article  PubMed  CAS  Google Scholar 

  • Shichiri M, Hanson KD, Sedivy JM (1993) Effects of C-Myc expression on proliferation, quiescence, and the G0 to G1 transition in nontransformed cells. Cell Growth Differ 4:93–104

    PubMed  CAS  Google Scholar 

  • Siebenlist U, Hennighausen L, Battey J, Leder P (1984) Chromatin structure and protein-binding in the putative regulatory region of the c-Myc gene in Burkittlymphoma. Cell 37:381–391

    Article  PubMed  CAS  Google Scholar 

  • Simonsson T, Pecinka P, Kubista M (1998) DNA tetraplex formation in the control region of c-myc. Nucleic Acids Res 26:1167–1172

    Article  PubMed  CAS  Google Scholar 

  • Simpson RU, Hsu T, Begley DA, Mitchell BA, Alizadeh BN (1987) Transcriptional regulation of the c-myc protooncogene by 1,25-dihydroxyvitamin D3 in HL-60 promyelocytic leukemia cells. J Biol Chem 262:4101–4108

    Google Scholar 

  • Sinden RR (1994) DNA supercoiling. In: Sinden RR (ed) DNA structure and function. Academic Press, San Diego, pp 95–133

    Google Scholar 

  • Song J, Ugai H, Kanazawa I, Sun K, Yokoyama KK (2001) Independent repression of a GC-rich housekeeping gene by Sp1 and MAZ involves the same cis-elements. J Biol Chem 276:19897–19904

    Article  PubMed  CAS  Google Scholar 

  • Spencer CA, Groudine M (1991) Control of C-Myc regulation in normal and neoplasticcells. Adv Cancer Res 56:1–48

    Article  PubMed  CAS  Google Scholar 

  • Subramanian A, Miller DM (2000) Structural analysis of alpha-enolase. Mapping the functional domains involved in down-regulation of the c-myc protooncogene. J Biol Chem 275:5958–5965

    Article  PubMed  CAS  Google Scholar 

  • Swain PS, Elowitz MB, Siggia ED (2002) Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc Natl Acad Sci U S A 99:12795–12800

    Article  PubMed  CAS  Google Scholar 

  • Tahirov TH, Temiakov D, Anikin M, Patlan V, McAllister WT, Vassylyev DG, Yokoyama S (2002) Structure of a T7 RNA polymerase elongation complex at 2.9 angstrom resolution. Nature 420:43–50

    Article  PubMed  CAS  Google Scholar 

  • Takimoto M, Quinn J, Farina A, Staudt L, Levens D (1989) fos/jun and octamer-binding protein interact with a common site in a negative element of the human c-myc gene. J Biol Chem 264:8992–8999

    PubMed  CAS  Google Scholar 

  • Takimoto M, Tomonaga T, Matunis M, Avigan M, Krutzsch H, Dreyfuss G, Levens D (1993) Specific binding of heterogeneous ribonucleoprotein particle protein-K to the human c-Myc promoter, in-vitro. J Biol Chem 268:18249–18258

    PubMed  CAS  Google Scholar 

  • Tao L, Dong Z, Leffak M, Zannis-Hadjopoulos M, Price G (2000) Major DNA replication initiation sites in the c-myc locus in human cells. J Cell Biochem 78:442–457

    Article  PubMed  CAS  Google Scholar 

  • Thalmeier K, Synovzik H, Mertz R, Winnacker EL, Lipp M (1989) Nuclear factor E2F mediates basic transcription and trans-activation by E1a of the human MYC promoter. Genes Dev 3:527–536

    PubMed  CAS  Google Scholar 

  • Thanos D, Maniatis T (1995) Virus induction of human IFN beta gene expression requires the assembly of an enhanceosome. Cell 83:1091–1100

    Article  PubMed  CAS  Google Scholar 

  • Tirode F, Busso D, Coin F, Egly JM (1999) Reconstitution of the transcription factor TFIIH: assignment of functions for the three enzymatic subunits, XPB, XPD, and cdk7. Mol Cell 3:87–95

    Article  PubMed  CAS  Google Scholar 

  • Tomonaga T, Levens D (1995) Heterogeneous nuclear ribonucleoprotein-K Is a DNA-binding transactivator. J Biol Chem 270:4875–4881

    Article  PubMed  CAS  Google Scholar 

  • Tomonaga T, Michelotti GA, Libutti D, Uy A, Sauer B, Levens D (1998) Unrestraining genetic processes with a protein-DNA hinge. Mol Cell 1:759–764

    Article  PubMed  CAS  Google Scholar 

  • Trumpp A, Refaeli Y, Oskarsson T, Gasser S, Murphy M, Martin GR, Bishop JM (2001) c-Myc regulates mammalian body size by controlling cell number but not cell size. Nature 414:768–773

    Article  PubMed  CAS  Google Scholar 

  • Van Buskirk C, Schupbach T (2002) Half pint regulates alternative splice site selection in Drosophila. Dev Cell 2:343–353

    Article  PubMed  Google Scholar 

  • Van Lint C, Emiliani S, Verdin E (1996) The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Expr 5:245–253

    PubMed  Google Scholar 

  • Warrington JA, Nair A, Mahadevappa M, Tsyganskaya M (2000) Comparison of human adult and fetal expression and identification of 535 housekeeping/maintenance genes. Physiol Genomics 2:143–147

    PubMed  CAS  Google Scholar 

  • Wisdom R, Lee W (1991) The protein-coding region of c-myc mRNA contains a sequence that specifies rapid mRNA turnover and induction by protein synthesis inhibitors. Genes Dev 5:232–243

    PubMed  CAS  Google Scholar 

  • Wittig B, Wolfl S, Dorbic T, Vahrson W, Rich A (1992) Transcription of human c-myc in permeabilized nuclei is associated with formation of Z-DNA in three discrete regions of the gene. EMBO J 11:4653–4663

    PubMed  CAS  Google Scholar 

  • Wolf DA, Strobl LJ, Pullner A, Eick D (1995) Variable pause positions of RNA-polymerase-Ii lie proximal to the c-Myc promoter irrespective of transcriptional activity. Nucleic Acids Res 23:3373–3379

    PubMed  CAS  Google Scholar 

  • Wolfl S, Wittig B, Dorbic T, Rich A (1997) Identification of processes that influence negative supercoiling in the human c-myc gene. Biochim Biophys Acta 1352:213–221

    PubMed  CAS  Google Scholar 

  • Wu CH, Yamaguchi Y, Benjamin LR, Horvat-Gordon M, Washinsky J, Enerly E, Larsson J, Lambertsson A, Handa H, Gilmour D (2003) NELF and DSIF cause promoter proximal pausing on the hsp70 promoter in Drosophila. Genes Dev 17:1402–1414

    Article  PubMed  CAS  Google Scholar 

  • Yasui D, Miyano M, Cai ST, Varga-Weisz P, Kohwi-Shigematsu T (2002) SATB1 targets chromatin remodelling to regulate genes over long distances. Nature 419:641–645

    Article  PubMed  CAS  Google Scholar 

  • Yeilding NM, Lee WM (1997) Coding elements in exons 2 and 3 target c-myc mRNA downregulation during myogenic differentiation. Mol Cell Biol 17:2698–2707

    PubMed  CAS  Google Scholar 

  • Yin YW, Steitz AA (2002) Structural basis for the transition from initiation to elongation transcription in T7 RNA polymerase. Science 298:1387–1395

    Article  PubMed  CAS  Google Scholar 

  • Zawel L, Kumar KP, Reinberg D (1995) Recycling of the general transcription factors during RNA polymerase II transcription. Genes Dev 9:1479–1490

    PubMed  CAS  Google Scholar 

  • Zhang GY, Campbell EA, Minakhin L, Richter C, Severinov K, Darst SA (1999) Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 angstrom resolution. Cell 98:811–824

    Article  PubMed  CAS  Google Scholar 

  • Zhang XY, Jabrane-Ferrat N, Asiedu CK, Samac S, Peterlin BM, Ehrlich M (1993) The major histocompatibility complex class II promoter-binding protein RFX (NF-X) is a methylated DNA-binding protein. Mol Cell Biol 13:6810–6818

    PubMed  CAS  Google Scholar 

  • Zhao H, Jin S, Fan F, Fan W, Tong T, Zhan Q (2000) Activation of the transcription factor Oct-1 in response to DNA damage. Cancer Res 60:6276–6280

    PubMed  CAS  Google Scholar 

  • Zheng L, Roeder RG, Luo Y (2003) S phase activation of the histone H2B promoter by OCA-S, a coactivator complex that contains GAPDH as a key component. Cell 114:255–266

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Chen D, Pierstorff E, Luo KX (1998) Transcription elongation factor P-TEFb mediates Tat activation of HIV-1 transcription at multiple stages. EMBOJ 17:3681–3691

    Article  CAS  Google Scholar 

  • Zobel A, Kalkbrenner F, Guehmann S, Nawrath M, Vorbrueggen G, Moelling K (1991) Interaction of the v-and c-Myb proteins with regulatory sequences of the human c-myc gene. Oncogene 6:1397–1407

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Levens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liu, J., Levens, D. (2006). Making Myc. In: Eisenman, R.N. (eds) The Myc/Max/Mad Transcription Factor Network. Current Topics in Microbiology and Immunology, vol 302. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32952-8_1

Download citation

Publish with us

Policies and ethics