Skip to main content

New Physics and the Muon Anomalous Magnetic Moment

  • Chapter
  • 589 Accesses

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 216))

Abstract

In this chapter we review various scenarios of physics beyond the Standard Model that may explain the difference between the measured value of the muon anomalous magnetic moment and the Standard Model expectation for this quantity. It was realized long ago that the muon anomalous magnetic moment provides a powerful tool for studying the energy frontier. For example, in late 1950s, the interest in the muon magnetic anomaly was driven by a quest to understand why the muon is heavier than the electron while all other properties of the two leptons are the same. It was suggested that the muon magnetic anomaly is a particular suitable observable since it can be used to probe the validity of QED up to the energy scale of about few GeV, the energy frontier at that time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Good exhibition of current ideas can be found in the Proceedings of 32nd SLAC Summer Institute on Particle Physics “Nature's Greatest Puzzles,” J. L. Hewett, J. Jaros, T. Kamae and C. Prescott (eds), eConf C040802.

    Google Scholar 

  2. J. A. Grifols and A. Mendez, Phys. Rev. D 26, 1809 (1982); J. Ellis, J. Hagelin and D. V. Nanopoulos, Phys. Lett. B 116, 283 (1982); R. Barbieri and L. Maiani, Phys. Lett. B 117, 203 (1982); D. A. Kosower, L. M. Krauss and N. Sakai, Phys. Lett. B 133, 305 (1983); T. C. Yuan, R. Arnowitt, A. H. Chamseddine and P. Nath, Z. Phys. C 26, 407 (1984); T. Moroi, Phys. Rev. D 53, 6565 (1996); M. Carena, G. F. Giudice and C. E. Wagner, Phys. Lett. B 390, 234 (1997); T. Ibrahim and P. Nath, Phys. Rev. D 61, 095008 (2000); G. Cho, K. Hagiwara and M. Hayakawa, Phys. Lett. B 478, 231 (2000).

    Article  ADS  Google Scholar 

  3. L. Everett, G. Kane, S. Rigolin and L. Wang, Phys. Rev. Lett. 86, 3484 (2001); S. P. Martin and J. D. Wells, Phys. Rev. D 64, 035003 (2001); J. L. Feng and K. Matchev, Phys. Rev. Lett. 86, 3480 (2001); E. A. Baltz and P. Gondolo, Phys. Rev. Lett. 86, 5004 (2001); U. Chattopadhya and P. Nath, Phys. Rev. Lett. 86, 5854 (2001); S. Komine, T. Moroi and M. Yamaguchi, Phys. Lett. B 506, 93 (2001); Phys. Lett. B 507, 224 (2001); J. R. Ellis, D. V. Nanopoulos and K. A. Olive, Phys. Lett. B 508, 65 (2001); R. Arnowitt, B. Dutta, B. Hu and Y. Santoso, Phys. Lett. B 505, 177 (2001); K. Choi et al., Phys. Rev. D 64, 055001 (2001); J. E. Kim, B. Kyae and H. M. Lee, Phys. Lett. B 520, 298 (2001); K. Cheung, C. Chou and O. C. Kong, Phys. Rev. D 64, 111301 (2001); H. Baer et al., Phys. Rev. D 64, 035004 (2001); C. Chen and C. Q. Geng, Phys. Lett. B 511, 77 (2001); G. Cho and K. Hagiwara, Phys. Lett. B 514, 123 (2001).

    Article  ADS  Google Scholar 

  4. E. D. Carlson, S. L. Glashow and U. Sarid, Nucl. Phys. B 309, 597 (1988); M. Krawczyk and J. Zochowski, Phys. Rev. D 55, 6968 (1997); P. H. Chankowski, M. Krawczyk and J. Zochowski, Eur. Phys. J. C 11, 661 (1999); A. Dedes and H. E. Haber, JHEP 0105, 006 (2001); F. Larious, G. Tavares-Velasco and C. P. Yuan, Phys. Rev. D 64, 055004 (2001); D. Chang, W. Chang, C. Chou and W. Keung, Phys. Rev. D 63, 091301 (2001); K. Cheung, C. Chou and O. C. Kong, Phys. Rev. D 64, 111301 (2001); Phys. Rev. D 68, 053003 (2003).

    Article  ADS  Google Scholar 

  5. J. P. Leveille, Nucl. Phys. B 137, 63 (1978).

    Article  ADS  Google Scholar 

  6. M. L. Graesser, Phys. Rev. D 61, 074019 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  7. H. Davoudiasl, J. L. Hewett and T. Rizzo, Phys. Lett. B 493, 135 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  8. K. Agashe, N. G. Deschpande and G. H. Wu, Phys. Lett. B 511, 85 (2001).

    Article  ADS  Google Scholar 

  9. B. Dobrescu and T. Appelquist, Phys. Lett. B 516, 85 (2001).

    Article  ADS  Google Scholar 

  10. J. Wess and B. Zumino, Nucl. Phys. B 70, 39 (1974); Phys. Lett. B 49, 5 (1974); Nucl. Phys. B 78, 1 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  11. V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Nucl. Phys. B 229, 381 (1983); Phys. Lett. B 166, 329 (1986).

    Article  ADS  Google Scholar 

  12. S. Ferrara and E. Remiddi, Phys. Lett. B, 53, 347 (1974).

    Article  ADS  Google Scholar 

  13. S. Ferrara and M. Porrati, Phys. Lett. B, 288, 85 (1992); I. Giannakis, J. T. Liu and M. Porrati, Phys. Rev. D, 58, 025009 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  14. T. Moroi, Phys. Rev. D 53, 6565 (1996);

    Article  ADS  Google Scholar 

  15. J. L. Lopez, D. V. Nanopolulos and X. Wang, Phys. Rev. D 49, 366 (1994).

    Article  ADS  Google Scholar 

  16. S. P. Martin and J. D. Wells, Phys. Rev. D 64, 035003 (2001).

    Article  ADS  Google Scholar 

  17. S. P. Martin and J. D. Wells, Phys. Rev. D 67, 015002 (2003).

    Article  ADS  Google Scholar 

  18. H. Baer, C. Balazs, A. Belyaev, T. Krupovnickas and X. Tata, JHEP 0306, 054 (2003).

    Article  ADS  Google Scholar 

  19. S. Eidelman et al. [Particle Data Group], Phys. Lett. B592, 1 (2004).

    ADS  Google Scholar 

  20. See M. Schmitt, Supersymmetry, Part II (Experiment), in [19].

    Google Scholar 

  21. See P. Igo-Kemenes, Searches for Higgs bosons, in [19].

    Google Scholar 

  22. A recent analysis is given in T. Hurth, E. Lunghi and W. Porod, Nucl. Phys. B 704, 56 (2005).

    Article  ADS  Google Scholar 

  23. D. N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003).

    Article  ADS  Google Scholar 

  24. J. C. Pati and A. Salam, Phys. Rev. D 10, 275 (1974); R. N. Mohapatra and J. C. Pati, Phys. Rev. D 11, 566 (1975); G. Senjanovic and R. N. Mohapatra, Phys. Rev. D 12, 1502 (1975).

    Article  ADS  Google Scholar 

  25. P. Mery, S. E. Moubarik, M. Perrottet and F. M. Renard, Zeit. f. Phys. C 46, 229 (1990); F. Herzog, Phys. Lett. B 148, 355 (1984); M. Suzuki, Phys. Lett. B 153, 289 (1985); A. Grau and J. A. Grifols, Phys. Lett. B 154, 283 (1985); M. Beccaria, F. M. Renard, S. Spagnolo and G. Verzegnassi, Phys. Lett. B 448, 129 (1999).

    Article  Google Scholar 

  26. LEP Elecroweak Working Group, A combination of preliminary electroweak measurements and constraints on the standard model, hep-ex/0511027.

    Google Scholar 

  27. J. F. Gunion, H. E. Haber, G. L. Kane and S. Dawson, The Higgs hunter's guide, Addison-Wesley, Reading, MA, 1990.

    Google Scholar 

  28. A. Dedes and H. Haber, JHEP 0105, 006 (2000).

    ADS  Google Scholar 

  29. D. Chang, W. Chang, C. Chou and W. Keung, Phys. Rev. D 63, 091301 (2001).

    Article  ADS  Google Scholar 

  30. K. Cheung, C. Chou and O. C. Kong, Phys. Rev. D 64, 111301 (2001).

    Article  ADS  Google Scholar 

  31. M. Krawczyk, Acta. Phys. Polon. B 33, 2621 (2002).

    ADS  Google Scholar 

  32. K. Cheung, C. Chou and O. C. Kong, Phys. Rev. D 68, 053003 (2003).

    Article  ADS  Google Scholar 

  33. S. M. Barr and A. Zee, Phys. Rev. Lett. 65, 21 (1990); Erratum-ibid. 65, 2920 (1990).

    Article  ADS  Google Scholar 

  34. G. Abbiendi et al. [OPAL Collaboration], Eur. Phys. J. C 18, 425 (2001); G. Abbiendi et al. [OPAL Collaboration], Eur. Phys. J. C 23, 397 (2002); DELPHI collaboration, DELPHI 2002-037-CONF-571; ALEPH collaboration, PA13-027.

    Article  ADS  Google Scholar 

  35. P. Franzini et al. [CUSB collaboration], Phys. Rev. D 35, 2883 (1987).

    Article  ADS  Google Scholar 

  36. N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B 429, 263 (1998); I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B 436, 257 (1998); G. Shiu and S. H. H. Tye, Phys. Rev. D 58, 106007 (1998); N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Rev. D 59, 086004 (1999).

    Article  ADS  Google Scholar 

  37. L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999); Phys. Rev. Lett. 83, 4690 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. F. A. Berends and R. Gastmans, Phys. Lett. B 55, 311 (1975).

    Article  ADS  Google Scholar 

  39. For a review, see J. L. Hewett and M. Spiropulu, Ann. Rev. Nucl. Part. Phys. 52, 397 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Melnikov, K., Vainshtein, A. (2006). New Physics and the Muon Anomalous Magnetic Moment. In: Theory of the Muon Anomalous Magnetic Moment. Springer Tracts in Modern Physics, vol 216. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-32807-6_8

Download citation

Publish with us

Policies and ethics