String Orbifold Spectra

  • Kang-Sin Choi
  • Jihn E. Kim
Part of the Lecture Notes in Physics book series (LNP, volume 696)


One of the most important issues in string theory is to understand the structure of group and the pattern of symmetry breaking. In this chapter, we discuss how the orbifolding of the heterotic string renders a low energy group. In fact, we can see the underlying symmetries of the spectrum just from the theory of Lie algebra and its generalization called the affne Lie algebra.


Vertex Operator Simple Root Wilson Line Heterotic String Dynkin Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Fuchs, A ffine Lie Algebras and Quantum Groups: An Introduction, with Applications in Conformal Field Theory (Univ. of Cambridge Press, 1993); J. Fuchs and C. Schweigert, Symmetries, Lie Algebras and Representations: A Graduate Course for Physicists, (Univ. of Cambridge Press, 1997).Google Scholar
  2. 2.
    M. Golubitsky and B. Rothschild, Pac. J. Math. 39, No. 2 (1971) 371.MathSciNetGoogle Scholar
  3. 3.
    H. Georgi, Lie Algebras in Particle Physics (2nd Edition, Perseus Books, Reading, MA, 1999).zbMATHGoogle Scholar
  4. 4.
    L. Ibañez, H. P. Nilles, and F. Quevedo, Phys. Lett. B192 (1987) 332.ADSGoogle Scholar
  5. 5.
    K. S. Narain, M. H. Sarmadi and C. Vafa, Nucl. Phys. B288 (1987) 551.MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    L. Ibañez, J. Mas, H. P. Nilles, and F. Quevedo, Nucl. Phys. B301 (1988) 157; D. Altschüller, Ph. Beran, J. Lacki, and I. Roditi, in Proc. 10th Johns Hopkins Workshop, ed. K. Dietz and V. Rittenberg (World Scientific, Singapore, 1987) [Bad Honnef, Germany, Sep. 1-3, 1986]; P. Sorba and B. Torresani, Int. J. Mod. Phys. A3 (1988) 1451.ADSCrossRefGoogle Scholar
  7. 7.
    W. Lerche, D. Lüst, and A. N. Schellekens, Nucl. Phys. B287 (1987) 477.ADSCrossRefGoogle Scholar
  8. 8.
    K. S. Choi, Nucl. Phys. B708 (2005) 194.ADSCrossRefGoogle Scholar
  9. 9.
    K. R. Dienes and J. March-Russell, Nucl. Phys. B479 (1996) 113.MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    K. R. Dienes, Nucl. Phys. B488 (1997) 141.MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Z. Kakushadze and S. H. H. Tye, Phys. Rev. Lett. 77 (1996) 2612.zbMATHMathSciNetADSCrossRefGoogle Scholar
  12. 12.
    J. Erler, Nucl. Phys. B475 (1996) 597.MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    P. Goddard and D. I. Olive, Int. J. Mod. Phys. A1 (1986) 303.MathSciNetADSGoogle Scholar
  14. 14.
    Y. Katsuki, Y. Kawamura, T. Kobayashi, N. Otsubo, and K. Tanioka, Prog. Theor. Phys. 82 (1989) 171; Y. Katsuki, Y. Kawamura, T. Kobayashi, N. Otsubo, Y. Ono, and K. Tanioka, Nucl. Phys. B341 (1990) 611.ADSCrossRefGoogle Scholar
  15. 15.
    K.-S. Choi, K. Hwang, and J. E. Kim, Nucl. Phys. B662 (2003) 476.MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    J. Patera and D. Sankoff, Tables of Branching Rules for Representaions of Simple Lie Algebras (Les Presses de l'Université de Montréal, 1973).Google Scholar
  17. 17.
    I. B. Frenkel and V. G. Kac, Invent. Math. 62 (1980) 23; G. Segal, Commun. Math. Phys. 80 (1981) 301.zbMATHMathSciNetADSCrossRefGoogle Scholar
  18. 18.
    M. B. Green, J. H. Schwarz, and E. Witten, Superstring theory, Vol. 1 and 2 (Cambridge Univ. Press, 1987).Google Scholar
  19. 19.
    A. Font, L. E. Ibanez, F. Quevedo, and A. Sierra, Nucl. Phys. B331 (1990) 421.MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    J. A. Casas, E. K. Katehou and C. Munoz, Nucl. Phys. B317 (1989) 171; J. E. Kim, Phys. Lett. B207 (1988) 434.MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    T. Kobayashi and H. Nakano, Nucl. Phys. B496 (1997) 103.MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    P. H. Ginsparg, Phys. Lett. B197 (1987) 139; L. E. Ibanez, Phys. Lett. B303 (1993) 55.MathSciNetADSGoogle Scholar
  23. 23.
    K.-S. Choi, S. Groot Nibbelink, and M. Trapletti, JHEP 0412 (2004) 063.MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    J. Polchinski, String Theory, Vol. I and II (Cambridge Univ. Press, 1998).Google Scholar
  25. 25.
    A. Font, L. E. Ibañez and F. Quevedo, Nucl. Phys. B345 (1990) 389.ADSCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Kang-Sin Choi
    • 1
  • Jihn E. Kim
    • 1
  1. 1.School of PhysicsSeoul National UniversitySeoulKorea

Personalised recommendations