Advertisement

Partition Function and Spectrum

  • Kang-Sin Choi
  • Jihn E. Kim
Part of the Lecture Notes in Physics book series (LNP, volume 696)

Abstract

We have seen in Subsect. 5.3.4 that the only modular invariant lattices in sixteen dimensions are those of E8×E8 and SO(32), while the ten dimensional spacetime part is independently modular invariant. But if we relax this condition such that it is modular invariant in the entire 26 dimensions, we have a more general theory. One fruitful result was the discovery of SO(16)×SO(16) heterotic string without supersymmetry [1], but its applicability is much more profound. This leads to a huge class of orbifold models which we discuss in this book. Furthermore, taking into account the right movers also, we can have a more general modular invariance, leading to the asymmetric orbifold.

Keywords

Partition Function Conjugacy Class Wilson Line Theta Function Shift Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Alvarez-Gaume, P. H. Ginsparg, G. W. Moore and C. Vafa, Phys. Lett. B 171 (1986) 155.MathSciNetADSGoogle Scholar
  2. 2.
    A. Font, L. E. Ibañez, H. P. Nilles, and F. Quevedo, Nucl. Phys. B307 (1988) 109.ADSCrossRefGoogle Scholar
  3. 3.
    L. E. Ibanez, J. Mas, H. P. Nilles and F. Quevedo, Nucl. Phys. B301 (1988) 157.MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    A. Font and S. Theisen, Introduction to String Compactification, Lectures given at Villa de Leyva, Colombia.Google Scholar
  5. 5.
    D. Mumford, “Tata Lectures on Theta, vol. I, II, III,” in Progress in Mathematics, Vol. 28 (1984) (Birkhäuser, Boston-Basel-Stuttgart, 1983), based on lectures given at TIFR during Oct., 1978 and Mar., 1979. E.T. Whittaker and G. N. Watson, “A Course of Modern Analysis”, 4th ed., Cambridge, 1927.Google Scholar
  6. 6.
    I. Senda and A. Sugamoto, Nucl. Phys. B302 (1988) 291.MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    J. A. Minahan, Nucl. Phys. B298 (1988) 36.MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    S. Groot Nibbelink and M. Laidlaw, JHEP 0401 (2004) 004.MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    T. Kobayashi and N. Ohtsubo, Phys. Lett. B 257 (1991) 56.MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    K.-S. Choi and J. E. Kim, Phys. Lett. B552 (2003) 81.MathSciNetADSGoogle Scholar
  11. 11.
    T. Asaka, W. Buchmüller and L. Covi, Phys. Lett. B523 (2001) 199.ADSGoogle Scholar
  12. 12.
    T. Kobayashi, S. Raby, and R.-J. Zhang, Phys. Lett. B593 (2004) 262.MathSciNetADSGoogle Scholar
  13. 13.
    S. Förste, H. P. Nilles, P. Vaudrevange, and A. Wingerter, Phys. Rev. D70 (2004) 106008.ADSGoogle Scholar
  14. 14.
    T. Kobayashi and N. Ohtsubo, Phys. Lett. B 262 (1991) 425.MathSciNetADSGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Kang-Sin Choi
    • 1
  • Jihn E. Kim
    • 1
  1. 1.School of PhysicsSeoul National UniversitySeoulKorea

Personalised recommendations