Strings on Orbifolds

  • Kang-Sin Choi
  • Jihn E. Kim
Part of the Lecture Notes in Physics book series (LNP, volume 696)


As discussed in the previous chapter, the heterotic string possesses very rich symmetries. It naturally describes SO(32) and E8×E8 gauge group, by assigned charges along the string. Also it has sixteen real (N = 4 in four dimension) supersymmetries. However, these symmetries are too large from the phenomenological point of view, by the criteria discussed in Chap. 2. Namely, in weakly coupled string theories, unless the fortuitous appearance of family structure results from the twisted sector as we will see it is better for a big gauge group is given already so that the standard model(SM) gauge group of rank 4 can be embedded there. In addition, as emphasized in Chap. 2, the group must allow “spinor representation” of SO(10). This leads to the E8×E′8 heterotic string as the first choice. In a strongly coupled string, nonperturbative effects may produce defects and we have to consider branes also. Compactification of strongly coupled strings are briefly sketched in Appendix B.2.


Gauge Group Wilson Line Heterotic String Closed String Mode Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Ibanez, in Selected Topics in Particle Physics and Cosmology [1987 Mt. Sorak Symposium], ed. H. S. Song (Min Eum Sa, Seoul, 1987), p.46.Google Scholar
  2. 2.
    J. Polchinski, String Theory, Vol. I and II (Cambridge Univ. Press, 1998).Google Scholar
  3. 3.
    A. Font, L. E. Ibañez, H. P. Nilles, and F. Quevedo, Nucl. Phys. B307 (1988) 109.ADSCrossRefGoogle Scholar
  4. 4.
    L. J. Dixon, J. A. Harvey, C. Vafa, and E. Witten, Nucl. Phys. B261 (1985) 678; Nucl. Phys. B274 (1986) 285.MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    M. B. Green, J. H. Schwarz, and E. Witten, Superstring theory, Vol. 1 and 2 (Cambridge Univ. Press, 1987).Google Scholar
  6. 6.
    E. Witten, “Fermion quantum numbers of Kaluza-Klein theory”, in Proc. of Shelter Island II Conference, Shelter Island, N.Y., Jan. 1–3, 1983, ed. R. Jackiw, N. N. Khuri, S. Weinberg, and E. Witten (MIT Press, 1985) p. 369.Google Scholar
  7. 7.
    J. Fuchs and C. Schweigert, Symmetries, Lie Algebras and Representations: A Graduate Course for Physicists, (Univ. of Cambridge Press, 1997).Google Scholar
  8. 8.
    D. S. Freed and C. Vafa, Comm. Math. Phys. 110 (1987) 349.zbMATHMathSciNetADSCrossRefGoogle Scholar
  9. 9.
    A. N. Schellekens and N. P. Warner, Phys. Lett. B177 (1986) 317; Phys. Lett. B181 (1986) 339; Nucl. Phys. B287 (1987) 317.MathSciNetADSGoogle Scholar
  10. 10.
    M. B. Green and J. H. Schwarz, Phys. Lett. B149 (1984) 117.MathSciNetADSGoogle Scholar
  11. 11.
    G. Aldazabal, A. Font, L. E. Ibañez, and G. Violero, Nucl. Phys. B519 (1998) 239.ADSCrossRefGoogle Scholar
  12. 12.
    Y. Hosotani, Phys. Lett. B126 (1983) 309.ADSGoogle Scholar
  13. 13.
    F. Gmeiner, J. E. Kim, H. M. Lee and H. P. Nilles, arXiv:hep-th/0205149; F. Gmeiner, S. Groot Nibbelink, H. P. Nilles, M. Olechowski and M. G. A. Walter, Nucl. Phys. B648 (2003) 35.ADSCrossRefGoogle Scholar
  14. 14.
    L. E. Ibanez, H. P. Nilles and F. Quevedo, Phys. Lett. B187 (1987) 25.MathSciNetADSGoogle Scholar
  15. 15.
    K. S. Narain, Phys. Lett. B169 (1986) 41.MathSciNetADSGoogle Scholar
  16. 16.
    K. S. Narain, M. H. Sarmadi and E. Witten, Nucl. Phys. B279 (1987) 369.MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    L. E. Ibanez and D. Lüst, Nucl. Phys. B382 (1992) 305; J. P. Derendinger, S. Ferarra, C. Kounnas, and F. Zwirner, Phys. Lett. B271 (1991) 307; L. Cardoso and B. A. Ovrut, Nucl. Phys. B389 (1992) 351.ADSCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Kang-Sin Choi
    • 1
  • Jihn E. Kim
    • 1
  1. 1.School of PhysicsSeoul National UniversitySeoulKorea

Personalised recommendations