Skip to main content

Quantization of Strings

  • Chapter
  • 761 Accesses

Part of the book series: Lecture Notes in Physics ((LNP,volume 696))

Abstract

Starting from this chapter, we discuss string theory for particle physics. Namely, our emphasis will be, starting from string theory, understanding low energy physics described by the standard model (SM). As summarized in Chap. 2, the SM is a chiral theory for fermions, and hence obtaining a chiral spectrum from string theory is of utmost importance. This goes with string theory with fermions, i.e. superstring rather than bosonic string. Superstring is written in ten spacetime dimensions (10D) but the effective quantum field theory of the SM is in four spacetime dimensions (4D), and the extra six dimensions (6D) must be cleverly hidden from the 4D observers. For hiding these extra dimensions, we follow the compactification scheme via orbifolds introduced in Chap. 3 and applied to quantum field theory in Chap. 4. It will be exploited fully in string theory in the subsequent chapters. In this chapter, we introduce basics in string theory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. B. Green, J. H. Schwarz, and E. Witten, Superstring theory, Vol. 1 and 2 (Cambridge Univ. Press, 1987).

    Google Scholar 

  2. M. Kaku, Introduction to Superstrings (Springer-Verlag, Berlin, 1988).

    MATH  Google Scholar 

  3. D. Bailin and A. Love, Supersymmetric Gauge Field Theory and String Theory (IOP Publishing, Bristol, 1996).

    MATH  Google Scholar 

  4. J. Polchinski, String Theory, Vol. I and II (Cambridge Univ. Press, 1998).

    Google Scholar 

  5. B. Zwiebach, A First Course in String Theory (Cambridge Univ. Press, 2004).

    Google Scholar 

  6. S. Gupta, Proc. Roy. Soc. A. 63 (1950) 681; K. Bleuler, Helv. Phys. Acta. 23 (1950) 567.

    MATH  ADS  Google Scholar 

  7. J. Polchinski, Phys. Rev. Lett. 75 (1995) 4724.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. C. Angelantonj and A. Sagnotti, Phys. Rep. 371 (2002) 1.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Nucl. Phys. B241 (1984) 333.

    Article  MathSciNet  ADS  Google Scholar 

  10. M. S. Virasoro, Phys. Rev. D1 (1970) 2933.

    ADS  Google Scholar 

  11. R. C. Brower, Phys. Rev. D6 (1972) 1655; P. Goddard and C. B. Thorn, Phys. Lett. B40 (1972) 235.

    ADS  Google Scholar 

  12. J. Polchinski, Commun. Math. Phys. 104 (1986) 37.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. P. Ramond, Phys. Rev. D3 (1971) 2415.

    MathSciNet  ADS  Google Scholar 

  14. A. Neveu and J. Schwarz, Nucl. Phys. B31 (1971) 86.

    Article  ADS  Google Scholar 

  15. F. Gliozzi, J. Scherk, and D. Olive, Nucl. Phys. B122 (1977) 253.

    Article  ADS  Google Scholar 

  16. N. Seiberg and E. Witten, Nucl. Phys. B276 (1986) 272.

    Article  MathSciNet  ADS  Google Scholar 

  17. J. Polchinski and Y. Cai, Nucl. Phys. B296 (1988) 91; See also [8].

    Article  MathSciNet  ADS  Google Scholar 

  18. D. J. Gross, J. A. Harvey, E. J. Martinec, and R. Rohm, Phys. Rev. Lett. 54 (1985) 502; Nucl. Phys. B256 (1985) 253; Nucl. Phys. B267 (1986) 75.

    Article  MathSciNet  ADS  Google Scholar 

  19. M. B. Green and J. H. Schwarz, Phys. Lett. B149 (1984) 117.

    MathSciNet  ADS  Google Scholar 

  20. Th. Kaluza, Sitzungsher. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1921 (1921) 966–972; O. Klein, Z. f. Physik, 37 (1926) 895; Nature, 118 (1926) 516.

    MATH  Google Scholar 

  21. D. Mumford, “Tata Lectures on Theta, vol. I, II, III,” in Progress in Mathematics, Vol. 28 (1984) (Birkhäuser, Boston-Basel-Stuttgart, 1983), based on lectures given at TIFR during Oct., 1978 and Mar., 1979. E.T. Whittaker and G. N. Watson, “A Course of Modern Analysis”, 4th ed., Cambridge, 1927.

    Google Scholar 

  22. H. Niemeier, J. Number Theor. 5 (1972) 142.

    Article  MathSciNet  Google Scholar 

  23. W. Nahm, Nucl. Phys. B135 (1978) 149; E. Cremmer, B. Julia and J. Scherk, Phys. Lett. B76 (1978) 409.

    Article  ADS  Google Scholar 

  24. L. Alvarez-Gaume and E. Witten, Nucl. Phys. B234 (1983) 269.

    MathSciNet  ADS  Google Scholar 

  25. I. B. Frenkel and V. G. Kac, Invent. Math. 62 (1980) 23; G. Segal, Commun. Math. Phys. 80 (1981) 301; P. Goddard and D. I. Olive, Int. J. Mod. Phys. A 1 (1986) 303.

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Choi, KS., Kim, J.E. (2006). Quantization of Strings. In: Quarks and Leptons From Orbifolded Superstring. Lecture Notes in Physics, vol 696. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-32764-9_5

Download citation

Publish with us

Policies and ethics