Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 696))

  • 777 Accesses

Abstract

If one starts from a (4 + n)-dimensional spacetime, it is necessary to obtain an effective 4 dimensional (4D) theory by hiding the extra n space-like dimensions. The most widely used method is to make these extra dimensions so small that 4D experiments so far performed could not have proved their existence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. J. Dixon, J. A. Harvey, C. Vafa, and E. Witten, Nucl. Phys. B261 (1985) 678; Nucl. Phys. B274 (1986) 285.

    Article  MathSciNet  ADS  Google Scholar 

  2. Y. Kawamura, Prog. Theor. Phys. 103 (2000) 613.

    Article  MathSciNet  ADS  Google Scholar 

  3. G. Altarelli and F. Feruglio, Phys. Lett. B511 (2001) 257.

    ADS  Google Scholar 

  4. L. J. Hall and Y. Nomura, Phys. Rev. D64 (2001) 055003.

    ADS  Google Scholar 

  5. R. Barbieri, L. J. Hall and Y. Nomura, Phys. Rev. D66 (2002) 045025.

    ADS  Google Scholar 

  6. Y. Kawamura, Prog. Theor. Phys. 105 (2001) 691.

    Article  MATH  ADS  Google Scholar 

  7. A. Hebecker and J. March-Russell, Nucl. Phys. B625 (2002) 128.

    Article  MathSciNet  ADS  Google Scholar 

  8. L. Hall, Y. Nomura, T. Okui and D. Smith, Phys. Rev. D65 (2002) 035008.

    ADS  Google Scholar 

  9. H. D. Kim, J. E. Kim, and H. M. Lee, Euro. Phys. J. C24 (2002) 159.

    Article  ADS  Google Scholar 

  10. K. S. Babu, S. M. Barr, and B. Kyae, Phys. Rev. D65 (2002) 11508.

    Google Scholar 

  11. R. Dermisek and A. Mafi, Phys. Rev. D65 (2002) 055002.

    ADS  Google Scholar 

  12. H. D. Kim and S. Raby, JHEP 0301 (2003) 056.

    Article  MathSciNet  ADS  Google Scholar 

  13. T. Asaka, W. Buchmüller and L. Covi, Phys. Lett. B523 (2001) 199.

    ADS  Google Scholar 

  14. N. Arkani-Hamed, A. G. Cohen and H. Georgi, Phys. Lett. B516 (2001) 395.

    MathSciNet  ADS  Google Scholar 

  15. C. A. Scrucca, M. Serone, L. Silvestrini and F. Zwirner, Phys. Lett. B525 (2002) 169.

    MathSciNet  ADS  Google Scholar 

  16. L. Pilo and A. Riotto, Phys. Lett. B546 (2002) 135.

    MathSciNet  ADS  Google Scholar 

  17. H. D. Kim, J. E. Kim, and H. M. Lee, JHEP 0206 (2002) 048.

    Article  ADS  Google Scholar 

  18. B. Kyae, C.-A. Lee, and Q. Shafi, Nucl. Phys. B683 (2004) 105.

    Article  ADS  Google Scholar 

  19. J. Scherk and J. H. Schwarz, Phys. Lett. B 82 (1979) 60.

    Article  ADS  Google Scholar 

  20. J. Polchinski, Phys. Rev. Lett. 75 (1995) 4724.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. L. Randall and R. Sundrum, Phys. Rev. Lett. 83 (1999) 4690.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. G. R. Dvali and M. A. Shifman, Phys. Lett. B396 (1997) 64; Phys. Lett. B407 (1997) 452(E).

    ADS  Google Scholar 

  23. S. Dimopoulos and D. E. Kaplan, Phys. Lett. B 531 (2002) 127.

    Article  ADS  Google Scholar 

  24. N. Arkani-Hamed, T. Gregoire and J. Wacker, JHEP 0203 (2002) 055; N. Marcus, A. Sagnotti and W. Siegel, Nucl. Phys. B 224 (1983) 159.

    Article  MathSciNet  ADS  Google Scholar 

  25. H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32 (1974) 438.

    Article  ADS  Google Scholar 

  26. T. Yanagida, KEK Workshop, 1979 (unpublished); M. Gell-Mann, P. Ramond, and R. Slansky, in Supergravity, eds. D. Freedman et al. (North-Holland, Amsterdam, 1980).

    Google Scholar 

  27. H. Georgi, Talk presented at AIP Conference, William and Mary, 1974 [AIP Conf. Proc. 23 (1975) 575]; H. Fritsch and P. Minkowski, Annals Phys. 93 (1975) 193.

    Google Scholar 

  28. F. Wilczek and A. Zee, Phys. Rev. D25 (1982) 553.

    ADS  Google Scholar 

  29. J. Pati and Abdus Salam, Phys. Rev. D8 (1973) 1240.

    ADS  Google Scholar 

  30. S. M. Barr, Phys. Lett. B112 (1982) 219.

    MathSciNet  ADS  Google Scholar 

  31. J.-P. Derendinger, J. E. Kim, and D. V. Nanopoulos, Phys. Lett. B139 (1984) 170.

    ADS  Google Scholar 

  32. C. G. Callan and J. A. Harvey, Nucl. Phys. B 250 (1985) 427.

    Article  MathSciNet  ADS  Google Scholar 

  33. P. H. Frampton and T. W. Kephart, Phys. Rev. D28 (1983) 1010.

    ADS  Google Scholar 

  34. T. Asaka, W. Buchmüller and L. Covi, Phys. Lett. B540 (2002) 295.

    ADS  Google Scholar 

  35. T. Asaka, W. Buchmuller and L. Covi, Nucl. Phys. B648 (2003) 231.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Choi, KS., Kim, J.E. (2006). Field Theoretic Orbifolds. In: Quarks and Leptons From Orbifolded Superstring. Lecture Notes in Physics, vol 696. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-32764-9_4

Download citation

Publish with us

Policies and ethics