Orbifolds and Spinors

  • Kang-Sin Choi
  • Jihn E. Kim
Part of the Lecture Notes in Physics book series (LNP, volume 696)


In this chapter, we introduce the basic notion of orbifold and spinor properties in higher dimensions. Both of these play crucial roles in obtaining the chiral spectrum in four dimensions. In the discussion, we start with low dimensional examples and then extend them to higher dimensional ones.


Basis Vector Conjugacy Class Lorentz Group Holonomy Group Gamma Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. J. Dixon, J. A. Harvey, C. Vafa and E. Witten, Nucl. Phys. B 261 (1985) 678; L. J. Dixon, J. A. Harvey, C. Vafa and E. Witten, Nucl. Phys. B 274 (1986) 285.MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    L. J. Dixon, D. Friedan, E. J. Martinec and S. H. Shenker, Nucl. Phys. B 282 (1987) 13.MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    M. Nakahara, Geometry, Topology And Physics (Bristol, UK: Institute of Physics Publishing, 1990) p. 505.zbMATHGoogle Scholar
  4. 4.
    S. Lefschetz, “Intersections and transformations of complexes and manifolds,” in Transactions of the American Mathematical Society (1926). See also textbooks, e.g. P. Griffiths and J. Harris, Principles of Algebraic Geometry (Wiley-Interscience, New York, 1994).Google Scholar
  5. 5.
    R.L.E. Schwanenberger, N-dimensional crystallography (Pitman, San Francisco, 1980).Google Scholar
  6. 6.
    D. G. Markushevich, M. A. Olshanetsky and A. M. Perelomov, Commun. Math. Phys. 111 (1987) 247–274.zbMATHMathSciNetADSCrossRefGoogle Scholar
  7. 7.
    J. Erler and A. Klemm, Commun. Math. Phys. 153 (1993) 579.zbMATHMathSciNetADSCrossRefGoogle Scholar
  8. 8.
    J. D. Bjorken and S. D. Drell, Relativistic Quantum Field Theory (McGraw Hill, New York, 1979); M. E. Peskin and D. V. Schroeder, An Introduction to quantum field theory (Addison-Wesley, New York, 1995).Google Scholar
  9. 9.
    See Appendix B in J. Polchinski, String theory, Vol. 2: Superstring theory and beyond (Cambridge Univ. Press, Cambridge, 1998).Google Scholar
  10. 10.
    M. Gell-Mann, P. Ramond and R. Slansky, CERN Print-80-0576, “Complex Spinors and Unified Theories”; also in Supergravity, edited by P. van Nieuwenhuizen and D.Z. Freedman (North Holland Publishing Co, Amsterdam, 1979).Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Kang-Sin Choi
    • 1
  • Jihn E. Kim
    • 1
  1. 1.School of PhysicsSeoul National UniversitySeoulKorea

Personalised recommendations