Advertisement

Standard Model and Beyond

  • Kang-Sin Choi
  • Jihn E. Kim
Part of the Lecture Notes in Physics book series (LNP, volume 696)

Abstract

The standard model (SM) consists of the confining color gauge theory SU(3) for strong interactions and the spontaneously broken electroweak gauge theory SU(2) L ×U(1) Y . In this subsection, we introduce the SM, concentrating on the issues relevant for our string orbifold construction.

Keywords

Gauge Boson Yukawa Coupling Minimal Supersymmetric Standard Model Extra Dimension Gauge Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Gell-Mann, Phys. Lett. 8 (1964) 214; G. Zweig, CERN TH-401, 412 (1964).CrossRefADSGoogle Scholar
  2. 2.
    M. Y. Han and Y. Nambu, Phys. Rev. 139 (1965) B1006. The violation of the spin-statistics relation was noted earlier, O. W. Greenberg, Phys. Rev. Lett. 13 (1964) 598.MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    W. A. Bardeen, H. Fritszch and M. Gell-Mann, “Light-cone Current Algebra, π0 Decay, and e+e- Annihilation”, in Scale and Conformal Symmetry in Hadron Physics, ed. R. Gatto [Wiley-Interscience, New York, 1973], p. 139. [Proc. of Frascati Advanced School, May, 1972].Google Scholar
  4. 4.
    H. D. Politzer, Phys. Rev. Lett. 30 (1973) 1346; D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30 (1973) 1343; Phys. Rev. D8 (1973) 3633.ADSCrossRefGoogle Scholar
  5. 5.
    S. Weinberg, Phys. Rev. Lett. 31 (1973) 494.ADSCrossRefGoogle Scholar
  6. 6.
    S. L. Glashow, Nucl. Phys. 22, (1961) 579; S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264; Abdus Salam, in Elementary Particle Theory, ed. N. Svartholm (Almqvist and Wiksells, Stockholm, 1969), p. 367.CrossRefGoogle Scholar
  7. 7.
    M. J. G. Veltman, Nucl. Phys. B123 (1977) 89.ADSCrossRefGoogle Scholar
  8. 8.
    Particle data book, K. Hagiwara et al., Phys. Rev. D66 (2002) 010001.ADSGoogle Scholar
  9. 9.
    M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49 (1973) 652.ADSCrossRefGoogle Scholar
  10. 10.
    A. A. Belavin, A. Polyakov, A. Shwartz, and Y. Tyupkin, Phys. Lett. B59 (1979) 85.ADSGoogle Scholar
  11. 11.
    C. G. Callan, R. F. Dashen, and D. J. Gross, Phys. Lett. B63 (1976) 334; R. Jackiw and C. Rebbi, Phys. Rev. Lett. 37 (1976) 172.ADSGoogle Scholar
  12. 12.
    For a review, see, J. E. Kim, Phys. Rep. 150 (1987) 1.ADSCrossRefGoogle Scholar
  13. 13.
    H. Georgi, cited in H. Georgi, Proc. 21st ICHEP Conf. (Paris, July 26–31, 1982), ed. P. Petiu and M. Porneuf (Editions de Physique, 1982), p. 803.Google Scholar
  14. 14.
    H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32 (1974) 438.ADSCrossRefGoogle Scholar
  15. 15.
    H. Georgi, H. R. Quinn, and S. Weinberg, Phys. Rev. Lett. 33 (1974) 451.ADSCrossRefGoogle Scholar
  16. 16.
    S. Weinberg, in Proc. Conf. Gauge Theories and Modern Field Theory (Boston, Sep. 26–27, 1975), ed. R. Arnowitt and P. Nath (MIT Press, 1976), p. 428; E. Gildener and S. Weinberg, Phys. Rev. D13 (1976) 3333.Google Scholar
  17. 17.
    A. J. Buras, J. R. Ellis, M. K. Gaillard, and D. V. Nanopoulos, Nucl. Phys. B135 (1978) 66.ADSCrossRefGoogle Scholar
  18. 18.
    P. Langacker, Phys. Rep. 72 (1981) 185.ADSCrossRefGoogle Scholar
  19. 19.
    M. Shiozawa et al. (Super-K Collaboration), Phys. Rev. Lett. 81 (1998) 3319.ADSCrossRefGoogle Scholar
  20. 20.
    H. Georgi, Nucl. Phys. B156 (1979) 126.MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    F. Gürsey, P. Ramond, and P. Sikivie, Phys. Lett. B60 (1976) 177.ADSGoogle Scholar
  22. 22.
    J. E. Kim, Phys. Rev. Lett. 45 (1980) 1916.ADSCrossRefGoogle Scholar
  23. 23.
    P. Frampton, Phys. Rev. Lett. 43 (1979) 1460; Phys. Lett. B89 (1980) 352.MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    J. Pati and Abdus Salam, Phys. Rev. D8 (1973) 1240.ADSGoogle Scholar
  25. 25.
    J. Pati and Abdus Salam, Phys. Rev. Lett. 31 (1973) 661.ADSCrossRefGoogle Scholar
  26. 26.
    S. M. Barr, Phys. Lett. B112 (1982) 219.MathSciNetADSGoogle Scholar
  27. 27.
    S. L. Glashow, Trinification of all elementary particle forces, in Proc. of IV Workshop on Grand Unification, ed. K. Kang et al. (World Scientific, Singapore, 1985), p. 88.Google Scholar
  28. 28.
    Abdus Salam and J. Strathdee, Nucl. Phys. B76 (1974) 477.MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    J. Wess and J. Bagger, Supersymmetry and Supergravity (2nd edition) (Princeton Series in Physics, Princeton, New Jersey, 1992).Google Scholar
  30. 30.
    S. Coleman and J. Mandula, Phys. Rev. 159 (1967) 1251.zbMATHADSCrossRefGoogle Scholar
  31. 31.
    Yu. A. Golfand and E. P. Likhtman, Pisma Zh. Eksp. Teor. Fiz. 13 (1971) 452 [JETP Lett. 13 (1971) 323.]Google Scholar
  32. 32.
    J. Wess and B. Zumino, Phys. Lett. B49 (1974) 52.ADSGoogle Scholar
  33. 33.
    S. Deser and B. Zumino, Phys. Rev. Lett. 38 (1977) 1433.ADSCrossRefGoogle Scholar
  34. 34.
    E. Cremmer, S. Ferrara, L. Girardello, and A. Van Proeyen, Nucl. Phys. B212 (1983) 413.ADSCrossRefGoogle Scholar
  35. 35.
    H. P. Nilles, Phys. Rep. 110 (1984) 1.ADSCrossRefGoogle Scholar
  36. 36.
    S. Dimopoulos and H. Georgi, Nucl. Phys. B193 (1981) 150; N. Sakai, Z. Phys. C11 (1981) 153.ADSCrossRefGoogle Scholar
  37. 37.
    J. E. Kim, P. Langacker, M. Levine, and W. H. H. Williams, Rev. Mod. Phys. 53 (1981) 211.ADSCrossRefGoogle Scholar
  38. 38.
    S. Dimopoulos, S. Raby, and F. Wilczek, Phys. Rev. D24 (1981) 1681.ADSGoogle Scholar
  39. 39.
    U. Amaldi, W. de Boer, and H. Fürstenau, Phys. Lett. B260 (1991) 447; C. Giunti, C. W. Kim, and U. Lee, Mod. Phys. Lett. A6 (1991) 1745; J. R. Ellis, S. Kelly, and D. V. Nanopoulos, Phys. Lett. B260 (1991) 131; P. Langacker and M. Luo, Phys. Rev. D44 (1991) 817.ADSGoogle Scholar
  40. 40.
    Th. Kaluza, Sitzungsher. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1921 (1921) 966–972; O. Klein, Z. f. Physik, 37 (1926) 895; Nature, 118 (1926) 516.zbMATHGoogle Scholar
  41. 41.
    Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, Phys. Lett. B429 (1998) 263.ADSGoogle Scholar
  42. 42.
    L. Randall and R. Sundrum, Phys. Rev. Lett. 83 (1999) 3370.zbMATHMathSciNetADSCrossRefGoogle Scholar
  43. 43.
    J. M. Cline, C. Grojean, and G. Servant, Phys. Rev. Lett. 83 (1999) 4245.zbMATHMathSciNetADSCrossRefGoogle Scholar
  44. 44.
    L. Randall and R. Sundrum, Phys. Rev. Lett. 83 (1999) 4690.zbMATHMathSciNetADSCrossRefGoogle Scholar
  45. 45.
    B. Kyae, J. E. Kim, and H. M. Lee, Phys. Rev. Lett. 86 (2001) 4223.MathSciNetADSCrossRefGoogle Scholar
  46. 46.
    See, for example, P. Frampton, Dual Resonance Models [W. A. Benjamin, Inc., Reading, MA, 1974].Google Scholar
  47. 47.
    J. Scherk and J. H. Schwarz, Phys. Lett. B52 (1974) 347; Nucl. Phys. B81 (1974) 118.MathSciNetADSGoogle Scholar
  48. 48.
    R. H. Brandenberger and C. Vafa, Nucl. Phys. B316 (1989) 391.MathSciNetADSCrossRefGoogle Scholar
  49. 49.
    J. H. Schwarz, Phys. Rep. 89 (1982) 223.zbMATHMathSciNetADSCrossRefGoogle Scholar
  50. 50.
    D. J. Gross, J. A. Harvey, E. J. Martinec, and R. Rohm, Phys. Rev. Lett. 54 (1985) 502; Nucl. Phys. B256 (1985) 253; Nucl. Phys. B267 (1986) 75.MathSciNetADSCrossRefGoogle Scholar
  51. 51.
    P. Candelas, G. T. Horowitz, A. Strominger, and E. Witten, Nucl. Phys. B258 (1985) 46.MathSciNetADSCrossRefGoogle Scholar
  52. 52.
    L. J. Dixon, J. A. Harvey, C. Vafa, and E. Witten, Nucl. Phys. B261 (1985) 678; Nucl. Phys. B274 (1986) 285; L. Ibañez, H. P. Nilles, and F. Quevedo, Phys. Lett. B187 (1987) 25.MathSciNetADSCrossRefGoogle Scholar
  53. 53.
    L. Ibañez, J. E. Kim, H. P. Nilles, and F. Quevedo, Phys. Lett. B191 (1987) 282.ADSGoogle Scholar
  54. 54.
    J. Polchinski, String Theory, Vol. II (Cambridge University Press, 1998), p. 430.MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Kang-Sin Choi
    • 1
  • Jihn E. Kim
    • 1
  1. 1.School of PhysicsSeoul National UniversitySeoulKorea

Personalised recommendations