Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 696))

  • 765 Accesses

Abstract

The standard model (SM) consists of the confining color gauge theory SU(3) for strong interactions and the spontaneously broken electroweak gauge theory SU(2) L ×U(1) Y . In this subsection, we introduce the SM, concentrating on the issues relevant for our string orbifold construction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Gell-Mann, Phys. Lett. 8 (1964) 214; G. Zweig, CERN TH-401, 412 (1964).

    Article  ADS  Google Scholar 

  2. M. Y. Han and Y. Nambu, Phys. Rev. 139 (1965) B1006. The violation of the spin-statistics relation was noted earlier, O. W. Greenberg, Phys. Rev. Lett. 13 (1964) 598.

    Article  MathSciNet  ADS  Google Scholar 

  3. W. A. Bardeen, H. Fritszch and M. Gell-Mann, “Light-cone Current Algebra, π0 Decay, and e+e- Annihilation”, in Scale and Conformal Symmetry in Hadron Physics, ed. R. Gatto [Wiley-Interscience, New York, 1973], p. 139. [Proc. of Frascati Advanced School, May, 1972].

    Google Scholar 

  4. H. D. Politzer, Phys. Rev. Lett. 30 (1973) 1346; D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30 (1973) 1343; Phys. Rev. D8 (1973) 3633.

    Article  ADS  Google Scholar 

  5. S. Weinberg, Phys. Rev. Lett. 31 (1973) 494.

    Article  ADS  Google Scholar 

  6. S. L. Glashow, Nucl. Phys. 22, (1961) 579; S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264; Abdus Salam, in Elementary Particle Theory, ed. N. Svartholm (Almqvist and Wiksells, Stockholm, 1969), p. 367.

    Article  Google Scholar 

  7. M. J. G. Veltman, Nucl. Phys. B123 (1977) 89.

    Article  ADS  Google Scholar 

  8. Particle data book, K. Hagiwara et al., Phys. Rev. D66 (2002) 010001.

    ADS  Google Scholar 

  9. M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49 (1973) 652.

    Article  ADS  Google Scholar 

  10. A. A. Belavin, A. Polyakov, A. Shwartz, and Y. Tyupkin, Phys. Lett. B59 (1979) 85.

    ADS  Google Scholar 

  11. C. G. Callan, R. F. Dashen, and D. J. Gross, Phys. Lett. B63 (1976) 334; R. Jackiw and C. Rebbi, Phys. Rev. Lett. 37 (1976) 172.

    ADS  Google Scholar 

  12. For a review, see, J. E. Kim, Phys. Rep. 150 (1987) 1.

    Article  ADS  Google Scholar 

  13. H. Georgi, cited in H. Georgi, Proc. 21st ICHEP Conf. (Paris, July 26–31, 1982), ed. P. Petiu and M. Porneuf (Editions de Physique, 1982), p. 803.

    Google Scholar 

  14. H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32 (1974) 438.

    Article  ADS  Google Scholar 

  15. H. Georgi, H. R. Quinn, and S. Weinberg, Phys. Rev. Lett. 33 (1974) 451.

    Article  ADS  Google Scholar 

  16. S. Weinberg, in Proc. Conf. Gauge Theories and Modern Field Theory (Boston, Sep. 26–27, 1975), ed. R. Arnowitt and P. Nath (MIT Press, 1976), p. 428; E. Gildener and S. Weinberg, Phys. Rev. D13 (1976) 3333.

    Google Scholar 

  17. A. J. Buras, J. R. Ellis, M. K. Gaillard, and D. V. Nanopoulos, Nucl. Phys. B135 (1978) 66.

    Article  ADS  Google Scholar 

  18. P. Langacker, Phys. Rep. 72 (1981) 185.

    Article  ADS  Google Scholar 

  19. M. Shiozawa et al. (Super-K Collaboration), Phys. Rev. Lett. 81 (1998) 3319.

    Article  ADS  Google Scholar 

  20. H. Georgi, Nucl. Phys. B156 (1979) 126.

    Article  MathSciNet  ADS  Google Scholar 

  21. F. Gürsey, P. Ramond, and P. Sikivie, Phys. Lett. B60 (1976) 177.

    ADS  Google Scholar 

  22. J. E. Kim, Phys. Rev. Lett. 45 (1980) 1916.

    Article  ADS  Google Scholar 

  23. P. Frampton, Phys. Rev. Lett. 43 (1979) 1460; Phys. Lett. B89 (1980) 352.

    Article  MathSciNet  ADS  Google Scholar 

  24. J. Pati and Abdus Salam, Phys. Rev. D8 (1973) 1240.

    ADS  Google Scholar 

  25. J. Pati and Abdus Salam, Phys. Rev. Lett. 31 (1973) 661.

    Article  ADS  Google Scholar 

  26. S. M. Barr, Phys. Lett. B112 (1982) 219.

    MathSciNet  ADS  Google Scholar 

  27. S. L. Glashow, Trinification of all elementary particle forces, in Proc. of IV Workshop on Grand Unification, ed. K. Kang et al. (World Scientific, Singapore, 1985), p. 88.

    Google Scholar 

  28. Abdus Salam and J. Strathdee, Nucl. Phys. B76 (1974) 477.

    Article  MathSciNet  ADS  Google Scholar 

  29. J. Wess and J. Bagger, Supersymmetry and Supergravity (2nd edition) (Princeton Series in Physics, Princeton, New Jersey, 1992).

    Google Scholar 

  30. S. Coleman and J. Mandula, Phys. Rev. 159 (1967) 1251.

    Article  MATH  ADS  Google Scholar 

  31. Yu. A. Golfand and E. P. Likhtman, Pisma Zh. Eksp. Teor. Fiz. 13 (1971) 452 [JETP Lett. 13 (1971) 323.]

    Google Scholar 

  32. J. Wess and B. Zumino, Phys. Lett. B49 (1974) 52.

    ADS  Google Scholar 

  33. S. Deser and B. Zumino, Phys. Rev. Lett. 38 (1977) 1433.

    Article  ADS  Google Scholar 

  34. E. Cremmer, S. Ferrara, L. Girardello, and A. Van Proeyen, Nucl. Phys. B212 (1983) 413.

    Article  ADS  Google Scholar 

  35. H. P. Nilles, Phys. Rep. 110 (1984) 1.

    Article  ADS  Google Scholar 

  36. S. Dimopoulos and H. Georgi, Nucl. Phys. B193 (1981) 150; N. Sakai, Z. Phys. C11 (1981) 153.

    Article  ADS  Google Scholar 

  37. J. E. Kim, P. Langacker, M. Levine, and W. H. H. Williams, Rev. Mod. Phys. 53 (1981) 211.

    Article  ADS  Google Scholar 

  38. S. Dimopoulos, S. Raby, and F. Wilczek, Phys. Rev. D24 (1981) 1681.

    ADS  Google Scholar 

  39. U. Amaldi, W. de Boer, and H. Fürstenau, Phys. Lett. B260 (1991) 447; C. Giunti, C. W. Kim, and U. Lee, Mod. Phys. Lett. A6 (1991) 1745; J. R. Ellis, S. Kelly, and D. V. Nanopoulos, Phys. Lett. B260 (1991) 131; P. Langacker and M. Luo, Phys. Rev. D44 (1991) 817.

    ADS  Google Scholar 

  40. Th. Kaluza, Sitzungsher. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1921 (1921) 966–972; O. Klein, Z. f. Physik, 37 (1926) 895; Nature, 118 (1926) 516.

    MATH  Google Scholar 

  41. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, Phys. Lett. B429 (1998) 263.

    ADS  Google Scholar 

  42. L. Randall and R. Sundrum, Phys. Rev. Lett. 83 (1999) 3370.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  43. J. M. Cline, C. Grojean, and G. Servant, Phys. Rev. Lett. 83 (1999) 4245.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  44. L. Randall and R. Sundrum, Phys. Rev. Lett. 83 (1999) 4690.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  45. B. Kyae, J. E. Kim, and H. M. Lee, Phys. Rev. Lett. 86 (2001) 4223.

    Article  MathSciNet  ADS  Google Scholar 

  46. See, for example, P. Frampton, Dual Resonance Models [W. A. Benjamin, Inc., Reading, MA, 1974].

    Google Scholar 

  47. J. Scherk and J. H. Schwarz, Phys. Lett. B52 (1974) 347; Nucl. Phys. B81 (1974) 118.

    MathSciNet  ADS  Google Scholar 

  48. R. H. Brandenberger and C. Vafa, Nucl. Phys. B316 (1989) 391.

    Article  MathSciNet  ADS  Google Scholar 

  49. J. H. Schwarz, Phys. Rep. 89 (1982) 223.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  50. D. J. Gross, J. A. Harvey, E. J. Martinec, and R. Rohm, Phys. Rev. Lett. 54 (1985) 502; Nucl. Phys. B256 (1985) 253; Nucl. Phys. B267 (1986) 75.

    Article  MathSciNet  ADS  Google Scholar 

  51. P. Candelas, G. T. Horowitz, A. Strominger, and E. Witten, Nucl. Phys. B258 (1985) 46.

    Article  MathSciNet  ADS  Google Scholar 

  52. L. J. Dixon, J. A. Harvey, C. Vafa, and E. Witten, Nucl. Phys. B261 (1985) 678; Nucl. Phys. B274 (1986) 285; L. Ibañez, H. P. Nilles, and F. Quevedo, Phys. Lett. B187 (1987) 25.

    Article  MathSciNet  ADS  Google Scholar 

  53. L. Ibañez, J. E. Kim, H. P. Nilles, and F. Quevedo, Phys. Lett. B191 (1987) 282.

    ADS  Google Scholar 

  54. J. Polchinski, String Theory, Vol. II (Cambridge University Press, 1998), p. 430.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Choi, KS., Kim, J.E. (2006). Standard Model and Beyond. In: Quarks and Leptons From Orbifolded Superstring. Lecture Notes in Physics, vol 696. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-32764-9_2

Download citation

Publish with us

Policies and ethics