Calabi–Yau Manifold

  • Kang-Sin Choi
  • Jihn E. Kim
Part of the Lecture Notes in Physics book series (LNP, volume 696)


An important class of manifolds permitting N = 1 supersymmetry in four dimension are the Calabi–Yau manifolds [1]. For a gauge hierarchy solution at least one supersymmetry is needed, however for the chiral nature of the SM fermions it is restricted to exactly one supersymmetry.


Zero Mode Complex Manifold Wilson Line Heterotic String Ahler Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Candelas, G. T. Horowitz, A. Strominger and E. Witten, Nucl. Phys. B258 (1985) 46.MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    P. Candelas, “Lectures On Complex Manifolds,” in Trieste 1987, Proceedings, Superstrings ′87,1–88; B. R. Greene, “String Theory on Calabi-Yau Manifolds,” in TASI 1996, Fields, strings and duality, 543–726, arXiv:hep-th/9702155.Google Scholar
  3. 3.
    M. B. Green, J. H. Schwarz and E. Witten, “Superstring Theory. Vol. 2: Loop Amplitudes, Anomalies and Phenomenology,” Cambridge Univ. Pr. (1987)Google Scholar
  4. 4.
    P. S. Aspinwall, arXiv:hep-th/9611137.Google Scholar
  5. 5.
    T. Eguchi, P. B. Gilkey and A. J. Hanson, Phys. Rept. 66 (1980) 213.MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    D. D. Joyce, “Compact Manifolds with Special Holonomy,” Oxford Univ. Press (2000); D. D. Joyce, arXiv:math.dg/0108088.Google Scholar
  7. 7.
    S. S. Gubser, arXiv:hep-th/0201114.Google Scholar
  8. 8.
    M. Nakahara, “Geometry, Topology and Physics,” 2nd ed, Bristol, IOP Press (2004).zbMATHGoogle Scholar
  9. 9.
    T. Eguchi and A. J. Hanson, Annals Phys. 120 (1979), 82; T. Egichi and A. J. Hanson, Phys. Lett. B74 (1978) 249.zbMATHMathSciNetADSCrossRefGoogle Scholar
  10. 10.
    M. Berkooz, R. G. Leigh, J. Polchinski, J. H. Schwarz, N. Seiberg and E. Witten, Nucl. Phys. B475 (1996) 115; K. A. Intriligator, Nucl. Phys. B496 (1997) 177; J. O. Conrad, JHEP 0011 (2000) 022.MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    G. Tian and S. T. Yau, “Three-Dimensional Algebraic Manifolds with C(1) = 0 and x = −6,” in San Diego 1986, Proceedings, Mathematical Aspects of String Theory, 543–559.Google Scholar
  12. 12.
    M. F. Atiyah and I. M. Singer, Annals Math. 87 (1968) 484; M. F. Atiyah and I. M. Singer, Proc. Nat. Acad. Sci.81 (1984) 2597.zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    See, for example, R. Donagi, Y. H. He, B. A. Ovrut and R. Reinbacher, JHEP 0506 (2005) 070.MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    D. N. Page, Phys. Lett. B80 (1978) 55; M. A. Walton, Phys. Rev. D 37 (1988) 377.ADSGoogle Scholar
  15. 15.
    M. Berger, Bull. Soc. Math. France 83 (1955) 225.MathSciNetGoogle Scholar
  16. 16.
    S. K. Donaldson, J. Diff. Geom. 18 (1983) 279; K. K. Uhlenbeck and S.-T. Yau, preprint (1986).zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Kang-Sin Choi
    • 1
  • Jihn E. Kim
    • 1
  1. 1.School of PhysicsSeoul National UniversitySeoulKorea

Personalised recommendations