Advertisement

Introduction and Summary

  • Kang-Sin Choi
  • Jihn E. Kim
Part of the Lecture Notes in Physics book series (LNP, volume 696)

Abstract

During and since the second half of the twentieth century, enormous progress has been made in understanding our universe in terms of fundamental particles and their interactions, namely in the language of quantum field theory. The advent of the standard model (SM) of particle physics has been the culmination of quantum field theory in all its full glory. The dawn of this successful particle physics era was opened with the unexpected discovery of parity violation in weak interaction phenomena [1]. It had long been known that weak interactions change the electromagnetic charge, i.e. electron (e) to electron type neutrino (νe), neutron (n) to proton (p). But, until the mid-1950s it had never occurred to the leading minds [2] that “parity might be violated”, chiefly because the atomic and nuclear transitions did not reveal any such possibility before that time. For nuclear transitions, both weak and electromagnetic phenomena contribute but at that time there were not sufficient data to fully conclude on the nature of parity operation in weak interactions [1]. For atomic transitions, the fundamental interaction is of electromagnetic origin and the experimental confirmation of parity conservation in atomic phenomena convinced most physicists that parity is conserved in the universe. In hindsight, parity conservation should have been imposed only on electromagnetic interactions, as the discovery of parity violation in weak interactions started a new era for weak interactions. There is still no experimental evidence that strong and electromagnetic interactions violate parity. Therefore, we know that parity violation in weak interactions is at the heart of making our universe as it is now, because the SM assumes from the outset the existence of massless chiral fields.1

Keywords

Gauge Group Gauge Boson Wilson Line Heterotic String Vacuum Expectation Value 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. D. Lee and C. N. Yang, Phys. Rev. 104 (1956) 254.ADSCrossRefGoogle Scholar
  2. 2.
    W. Pauli, “General remarks on parity nonconservation”, Talk at Conf. on Nuclear Structure 416 (Rehovoth, 1957), in Wolfgang Pauli, ed. C. P. Enz and K. v. Meyenn, p. 481–483.Google Scholar
  3. 3.
    R. Feynman and M. Gell-Manni, Phys. Rev. 109 (1958) 193; E. C. G. Sudarshan and R. Marshak, Phys. Rev. 109 (1958) 1860.zbMATHMathSciNetADSCrossRefGoogle Scholar
  4. 4.
    T. D. Lee and C. N. Yang, Phys. Rev. 119 (1960) 1410.zbMATHMathSciNetADSCrossRefGoogle Scholar
  5. 5.
    H. Weyl, Sitzungsher. d. Berlin Akad. 1918 (1918) 465.zbMATHGoogle Scholar
  6. 6.
    S. L. Glashow, Nucl. Phys. 22, (1961) 579; S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264; Abdus Salam, in Elementary Particle Theory, ed. N. Svartholm (Almqvist and Wiksells, Stockholm, 1969), p. 367.CrossRefGoogle Scholar
  7. 7.
    J. Pati and Abdus Salam, Phys. Rev. D8 (1973) 1240.ADSGoogle Scholar
  8. 8.
    Weinberg and Salam, in [6].Google Scholar
  9. 9.
    L. Susskind, Phys. Rev. D20 (1979) 2619; S. Weinberg, Phys. Rev. D19 (1979) 1277.ADSGoogle Scholar
  10. 10.
    P. W. Higgs, Phys. Lett. B12 (1964) 132; Phys. Rev. Lett. 13 (1964) 508; F. Englert and R. Brout, Phys. Rev. Lett. 13 (1964) 321; G. S. Guralnick, C. R. Hagen, and T. W. B. Kibble, Phys. Rev. Lett. 13 (1964) 585.Google Scholar
  11. 11.
    H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32 (1974) 438.ADSCrossRefGoogle Scholar
  12. 12.
    H. Georgi, H. R. Quinn, and S. Weinberg, Phys. Rev. Lett. 33 (1974) 451.ADSCrossRefGoogle Scholar
  13. 13.
    H. Georgi, Nucl. Phys. B156 (1979) 126.MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Th. Kaluza, Sitzungsher. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1921 (1921) 966–972; O. Klein, Z. f. Physik, 37 (1926) 895; Nature 118 (1926) 516.zbMATHGoogle Scholar
  15. 15.
    L. Randall and R. Sundrum, Phys. Rev. Lett. 83 (1999) 4690.zbMATHMathSciNetADSCrossRefGoogle Scholar
  16. 16.
    E. Witten, “Fermion quantum numbers of Kaluza-Klein theory”, in Proc. of Shelter Island II Conference, Shelter Island, N.Y., Jan. 1–3, 1983, ed. R. Jackiw, N. N. Khuri, S. Weinberg, and E. Witten (MIT Press, 1985) p. 369.Google Scholar
  17. 17.
    P. Frampton and T. W. Kephart, Phys. Rev. D28 (1983) 1010.ADSGoogle Scholar
  18. 18.
    L. Alvarez-Gaume and E. Witten, Nucl. Phys. B234 (1984) 269.MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    M. B. Green and J. Schwarz, Phys. Lett. B149 (1984) 117.MathSciNetADSGoogle Scholar
  20. 20.
    D. J. Gross, J. A. Harvey, E. J. Martinec, and R. Rohm, Phys. Rev. Lett. 54 (1985) 502; Nucl. Phys. B256 (1985) 253.MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    P. Candelas, G. T. Horowitz, A. Strominger, and E. Witten, Nucl. Phys. B258 (1985) 46.MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    L. J. Dixon, J. A. Harvey, C. Vafa, and E. Witten, Nucl. Phys. B261 (1985) 678; Nucl. Phys. B274 (1986) 285; L. Ibañez, H. P. Nilles, and F. Quevedo, Phys. Lett. B187 (1987) 25.MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    I. Antoniadis, C. P. Bachas, and C. Kounnas, Nucl. Phys. B289 (1987) 87.MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    W. Lerche, D. Lüst, and A. N. Schellekens, Nucl. Phys. B287 (1987) 477.ADSCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Kang-Sin Choi
    • 1
  • Jihn E. Kim
    • 1
  1. 1.School of PhysicsSeoul National UniversitySeoulKorea

Personalised recommendations