Advertisement

Das Gehör

Chapter
  • 3.3k Downloads
Part of the Springer-Lehrbuch book series (SLB)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Zu Kapitel 19: Mechanische Sinne II: Gehör, Echoortung Mensch, Wirbeltier

  1. Au WWL, Popper AN, Fay RR (2002) Hearing by whales and dolphins. Springer, Berlin Heidelberg New YorkGoogle Scholar
  2. Barth FG, Schmid A (2001) Ecology of sensing. Springer, Berlin Heidelberg New YorkGoogle Scholar
  3. Chan E et al. (1999) Mechanically evoked shortening of outer hair cells isolated from the guinea pig organ of Corti. Hear Res 128(1/2): 166–174PubMedCrossRefGoogle Scholar
  4. Charisius H (2001) Turbo im Ohr. Spektrum Jan 2001: 14–15Google Scholar
  5. Dallos P, Popper AN, Fay RR (1996) The cochlea. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  6. Deutsch D (1994) Paradoxien der Tonhöhenwahrnehmung. In: Zenner HP, Zenner E (Hrsg) Physiologie der Sinne. Spektrum, Weinheim, S 14–20Google Scholar
  7. Dooling RJ, Fay RR, Popper AN (2000) Comparative hearing: birds and reptiles. Springer, Berlin Heidelberg New YorkGoogle Scholar
  8. Euler M (1996) Biophysik des Gehörs. Teil I: Von der passiven zur aktiven Wahrnehmung. Biol in unserer Zeit 26: 163–172CrossRefGoogle Scholar
  9. Euler M (1996) Biophysik des Gehörs. Teil II: Die kontraintui-tive Effektivität nichtlinearer Dynamik in der biologischen Informationsverarbeitung. Biol in unserer Zeit 26(3): 304–312CrossRefGoogle Scholar
  10. Euler M (1996) Hörexperimente: Nichtlineare Dynamik auf materieller und mentaler Ebene. Biol in unserer Zeit 26(3): 313–322CrossRefGoogle Scholar
  11. Fay RR, Popper AN (1999) Comparative hearing: fish and amphibians. Springer, Berlin Heidelberg New YorkGoogle Scholar
  12. Fettiplace R, Fuchs PA (1999) Mechanisms of hair cell tuning. Annu Review Physiol 61: 873–900CrossRefGoogle Scholar
  13. Fridberger A et al. (2004) Organ of Corti potentials and the motion of the basilar membrane. J Neurosci 24(45): 10057–10063PubMedCrossRefGoogle Scholar
  14. Fuchs PA et al. (2003) The afferent synapse of cochlear hair cells. Curr Opin Neurobiol 13(4): 452–458PubMedCrossRefGoogle Scholar
  15. Gillepsie PG, Cyr JL (2004) Myosin-lc, the hair cell’s adaptation motor. Annu Review Physiol 66: 771–798CrossRefGoogle Scholar
  16. Gretchen E et al. (1999) Axons from anteroventral cochlear nucleus that terminate in medial superior olive of cat: observations related to delay lines. J Neurosci 19(8): 3146–3161Google Scholar
  17. Hagstrum JT (2000) Infrasound and the avian navigational map. J Exp Biol 203 Pt 7: 1103–1111PubMedGoogle Scholar
  18. Harding GW, Bohne BA (2004) Noise-induced hair-cell loss and total exposure energy: analysis of a large data set. J Acoust Soc Am 115(5 Pt 1): 2207–2220PubMedCrossRefGoogle Scholar
  19. Hu X et al. (1999) Direct visualization of organ of corti kinematics in a hemicochlea. Neurophysiol 82(5): 2798–2807Google Scholar
  20. Hudspeth AJ (1994) Haarzellen des Innenohrs. In: Zenner HP, Zenner E (Hrsg) Physiologie der Sinne. Spektrum, Weinheim, S 2–13Google Scholar
  21. Jia S, He DZ (2005) Motility-associated hair-bundle motion in mammalian outer hair cells. Nature Neurosci 8(8): 1028–1034PubMedCrossRefGoogle Scholar
  22. Leblanc A (1999) Atlas of hearing and balance organs. Springer, Berlin Heidelberg New YorkGoogle Scholar
  23. Marsalek P et al. (2005) Spike encoding mechanisms in the sound localization pathway. Biosystems 79(1–3): 191–198PubMedCrossRefGoogle Scholar
  24. Matsumoto N, Kalinec F (2005) Prestin-dependent and pres-tin-independent motility of guinea pig outer hair cells. Hear Res 208(1/2): 1–13PubMedCrossRefGoogle Scholar
  25. Neuweiler G (1990) Echoortende Fledermäuse. Biol in unserer Zeit 20: 169–176CrossRefGoogle Scholar
  26. Neuweiler G (1993) Biologie der Fledermäuse. Thieme, StuttgartGoogle Scholar
  27. Oostenbrink P et al. (2004) Otoacoustic emissions. Am J Elec-troneurodiagnostic Technol 44(3): 189–198Google Scholar
  28. Perozo E et al. (2002) Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418: 942–947PubMedCrossRefGoogle Scholar
  29. Popper N, Fay RR (eds) (1981) Hearing and sound communication in fishes. Springer, Berlin Heidelberg New YorkGoogle Scholar
  30. Purves PP, Pilleri G (eds) (1983) Echolocation in whales and dolphins. Academic Press, New YorkGoogle Scholar
  31. Santos-Sacchi J (2003) New tunes from Corti’s organ: the outer hair cell boogie rules. Curr Opin Neurobiol 13(4): 459–468PubMedCrossRefGoogle Scholar
  32. Terhardt E (1989) Warum hören wir Sinustöne? Naturwissen-schaften 76: 496–504CrossRefGoogle Scholar
  33. Trussel LO (1999) Synaptic mechanisms for coding timing in auditory neurons. Annu Review Physiol 61: 809–834CrossRefGoogle Scholar
  34. Zheng J et al. (2002) Prestin, the motor protein of outer hair cells. Audiol Neurootol 7(1): 9–12PubMedCrossRefGoogle Scholar
  35. Zhou Y et al. (2005) A model for interaural time difference sensitivity in the medial superior olive: interaction of excitatory and inhibitory synaptic inputs, channel dynamics, and cellular morphology. J Neurosci 25(12): 3046–3058PubMedCrossRefGoogle Scholar
  36. Zwicker E, Fastl H (1999) Psychoacustics. Facts and models. Springer, Berlin Heidelberg New YorkGoogle Scholar

Insekten, Arthropoden

  1. Barth FG, Schmid A (2001) Ecology of sensing. Springer, Berlin Heidelberg New YorkGoogle Scholar
  2. Boekhoff-Falk G (2005) Hearing in Drosophila: development of Johnston’s organ and emerging parallels to vertebrate ear development. Dev Dyn 232(3): 550–558PubMedCrossRefGoogle Scholar
  3. Hoy RR, Popper AN, Fay RR (1998) Comparative hearing: insects. Springer, Berlin Heidelberg New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Personalised recommendations