Hormonale Steuerung

Part of the Springer-Lehrbuch book series (SLB)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Zu Kapitel 11: Hormone Lehrbücher, Sammelwerke

  1. Joy KP et al. (1999) Comparative endocrinology and reproduction. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  2. Koolman J (1989) Ecdysone, from chemistry to mode of action. Thieme, StuttgartGoogle Scholar
  3. Richter D (1999) Regulatory peptides and cognate receptors. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  4. Spindler KD (1997) Vergleichende Endokrinologie. Thieme, StuttgartGoogle Scholar
  5. Tata JR (1998) Hormonal signaling and postembryonic development. Springer, Berlin Heidelberg New York TokyoGoogle Scholar

Artikel Stoffwechsel, vegetative Funktionen

  1. Baumann CA, Saltiel AR (2001) Spatial compartimentalization of signal transduction in insulin action. Bioessays 23: 215–222PubMedCrossRefGoogle Scholar
  2. Bern H (1975) On two possible primary activities of prolactins: osmoregulatory and developmental. Verh Dtsch Zool Ges 1975: 40–46Google Scholar
  3. Cabot PJ (2001) Immune-derived opioids and peripheral antinociception. Clinical & Experim Pharmacology ⇐p; Physiol 28: 230–232CrossRefGoogle Scholar
  4. Cato ACB, Wade E (1996) Molecular mechanisms of anti-inflammatory action of glucocorticoids. Bioessays 18:371–378PubMedCrossRefGoogle Scholar
  5. Charmandari E et al. (2005) Endocrinology of the stress response. Annu Review Physiol 67: 335–376CrossRefGoogle Scholar
  6. Freeman ME et al. (2000) Prolactin: structure, function, and regulation of secretion. Physiol Rev 80: 1523–1631PubMedGoogle Scholar
  7. Frieden E (1981) The dual role of thyroid hormones in vertebrate development and calorigenesis. In: Gilbert LI, Frieden E (eds) Metamorphosis: A problem in developmental biology. Plenum, New York, pp 545–564Google Scholar
  8. Friedman MI et al. (2005) Peripheral signals in the control of feeding behavior. Chem Senses 30: i182–i183PubMedCrossRefGoogle Scholar
  9. Föstermann U (1994) Stickoxid (NO): Umweltgift und körpereigener Botenstoff. Biol in unserer Zeit 24: 62–69CrossRefGoogle Scholar
  10. Goffin Vet al. (2002) Prolactin: the new biology of an old hormone. Annu Rev Physiol 64: 47–67PubMedCrossRefGoogle Scholar
  11. Haimann C (2002) Die Diabetes-Behandlung der Zukunft. Spektrum März 2002: 61–66Google Scholar
  12. Handwerger S, Freemark M (2000) The roles of placental growth hormone and placental lactogene in the regulation of human fetal growth and development. J Pediatric Endocrinol Metab 13: 343–356Google Scholar
  13. Kanzak M, Pessin JE (2001) Signal integration and the specificity of insulin action. Cell Biochem Biophys 35: 191–209CrossRefGoogle Scholar
  14. Kide Y et al. (2001) The insulin receptor and its cellular targets. J Clinical Endocrinology & Metabolism 86: 972–979CrossRefGoogle Scholar
  15. Maggi A et al. (2004) Estrogens in the nervous system: mechanisms and nonreproductive functions. Annu Review Physiol 66: 419–446CrossRefGoogle Scholar
  16. Manzon LA (2002) The role of prolactin in fish osmoregulation: a review. General Compar Endocrinol 125: 291–310CrossRefGoogle Scholar
  17. Miyawaki K et al. (2002) Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nature Medicine 8: 738–742PubMedCrossRefGoogle Scholar
  18. Papageorgiou TC et al. (2001) Human chorionic gonadotropin levels after blastocyst transfer are highly predictive of pregnancy outcome. Fertil Steril 76: 981–987PubMedCrossRefGoogle Scholar
  19. Przewlocki R, Przewlocka B (2001) Opioids in chronic pain. Eur J Pharmacol 429: 79–91PubMedCrossRefGoogle Scholar
  20. Schradin C, Anzenberger G (1999) Prolactin, the hormone of paternity. News in Physiol Sci 14: 223–231Google Scholar
  21. Schwartz MW, Morton GJ (2002) Keeping hunger at bay. Nature 418: 595–597PubMedCrossRefGoogle Scholar
  22. Spiegelman BM, Flier JS (2001) Obesity and the regulation of energy balance. Cell 104: 531–543PubMedCrossRefGoogle Scholar
  23. Steppan CM et al. (2001) The hormone resistin links obesity to diabetes. Nature 409: 307–312PubMedCrossRefGoogle Scholar
  24. Tanaka M et al. (2000) Noradrenaline systems in the hypothalamus, amygdala and locus coeruleus are involved in the provocation of anxiety: basic studies. Eur J Pharmacol 405: 397–406PubMedCrossRefGoogle Scholar
  25. Tisch R, McDevitt H (1996) Insulin-dependent diabetes mellitus. Cell 85: 291–297PubMedCrossRefGoogle Scholar
  26. Vaccarino AL, Kastin AJ (2001) Endogenous opiates: 2000. Peptides 22: 2257–2328PubMedCrossRefGoogle Scholar
  27. Voogt JL et al. (2001) Regulation of prolactin secretion during pregnancy and lactation. Progress in Brain Res 133: 173–185CrossRefGoogle Scholar
  28. Zhang J, Lazar MA (2000) The mechanism of action of thyroid hormones. Annu Review Physiol 62: 439–466CrossRefGoogle Scholar

Geschlechtsentwicklung, Sexualhormone

  1. Britt KL, Findlay JK (2003) Regulation of the phenotype of ovarian somatic cells by estrogen. Mol Cell Endocrinol 202: 11–17PubMedGoogle Scholar
  2. Haqq CM, Donahoe PK (1998) Regulation of sexual dimorphism in mammals. Physiol Rev 78: 1–33PubMedGoogle Scholar
  3. Simpson ER (2002) Aromatization of androgens in woman: current concepts and findings. Fertil Steril 77Suppl 4: 6–10CrossRefGoogle Scholar
  4. Simpson ER (2003) Sources of estrogen and their importance. J Steroid Biochem Mol Biol 86(3–5): 225–230PubMedCrossRefGoogle Scholar
  5. Simpson ER et al. (2002) Aromatase — a brief overview. Annu Rev Physiol 64: 93–127PubMedCrossRefGoogle Scholar

Geschlecht, Gehirn und Verhalten

  1. Auger AP (2004) Steroid receptor control of reproductive behavior. Hormones and Behavior 45: 168–172PubMedCrossRefGoogle Scholar
  2. Beyer C (1999) Estrogen and the mammalian brain. Anat Embryol 199: 379–390PubMedCrossRefGoogle Scholar
  3. Chung WC et al. (2002) Sexual differentiation of the bed nucleus of the stria terminalis in humans may extend into adulthood. J Neurosci 22: 1027–1033PubMedGoogle Scholar
  4. DeCherney AH (2000) Hormone receptors and sexuality in the human female. J Womens Health Gender Based Med 9Suppl 1: 9–13CrossRefGoogle Scholar
  5. Goldstein JM et al. (2001) Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cereb Cortex 11(6): 490–497PubMedCrossRefGoogle Scholar
  6. Gooren LJ, Kruijver FP (2002) Androgens and male behavior. Mol Cell Endocrinol 198: 31–40PubMedCrossRefGoogle Scholar
  7. Gorski RA (2002) Hypothalamic imprinting by gonadal steroid hormones. Adv Exp Med Biol 511: 57–70PubMedGoogle Scholar
  8. Hampson E, Kimura D (1992) Sex differences and hormonal influences on cognitive function in humans: In: Becker JB, Breedlove SM, Crews D (eds) Behavioral endocrinology. MIT Press, Cambridge/MA, pp 347–400Google Scholar
  9. Hines M (2003) Sex steroids and human behavior: prenatal androgen exposure and sex-typical play behavior in children. Ann NY Acad Sci 1007: 272–282PubMedCrossRefGoogle Scholar
  10. Maggi A et al. (2004) Estrogens in the nervous system: mechanisms and nonreproductive functions. Annu Review Physiol 66: 419–446CrossRefGoogle Scholar
  11. McEwen B (2002) Estrogen actions throughout the brain. Recent Prog Horm Res 57: 357–384PubMedCrossRefGoogle Scholar
  12. Li T, Shen Y (2005) Estrogen and brain: synthesis, function and diseases. Front Biosci 10: 257–267PubMedGoogle Scholar
  13. Luders et al. (2004) Gender differences in cortical complexity. Nature Neurosci 7(8): 799–800PubMedCrossRefGoogle Scholar
  14. Moore FL, Evans SJ (1999) Steroid hormones use non-genomic mechanisms to control brain functions and behaviors: a review of evidence. Brain Behavior Evolution 54: 41–50CrossRefGoogle Scholar
  15. Negri-Cesi P et al. (2004) Sexual differentiation of the brain: role of testosterone and its active metabolites. J Endocrinol Invest 27Suppl (6): 120–127PubMedGoogle Scholar
  16. Rademacher J et al. (2001) Human primary auditory cortex in women and men. Neuroreport 12: 1561–1565PubMedCrossRefGoogle Scholar
  17. Schradin C, Anzenberger G (1999) Prolactin, the hormone of paternity. News in Physiol Sci 14: 223–231Google Scholar
  18. Swaab et al. (2003) Sex differences in the hypothalamus in the different stages of human life. Neurobiol Aging 24Suppl 1:S1–16; discussion S17–19PubMedCrossRefGoogle Scholar
  19. Tramontin AD et al. (2003) Androgens and estrogens induce seasonal-like growth of song nuclei in the adult songbird brain. J Neurobiol 57: 130–140PubMedCrossRefGoogle Scholar
  20. Wade J, Arnold AP (2004) Sexual differentiation of the zebra fish song system. Ann NY Acad Sci 1016: 540–559PubMedCrossRefGoogle Scholar

Xenoestrogene, endokrine Disruptoren

  1. Braunbeck et al. (1998) Fish Ecotoxicology. Birkhäuser, BaselGoogle Scholar
  2. Kime DE (1999) Endocrine disruption in fish. Kluwer, DordrechtGoogle Scholar
  3. Sharpe RM (2001) Hormones and testis development and the possible adverse effects of environmental chemicals. Toxicology 120: 221–232Google Scholar
  4. Skakkebaak NE et al. (2001) Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod 16: 972–978CrossRefGoogle Scholar
  5. Taylor MR, Harrison PT (1999) Ecological effects of endocrine disruption: current evidence and research priorities. Chemosphere 39: 1237–1248PubMedCrossRefGoogle Scholar
  6. Younes M (1999) Specific issues in health risk assessment of endocrine disrupting chemicals and international activities. Chemosphere 39: 1253–1257PubMedCrossRefGoogle Scholar

Hormone und Metamorphose Bücher

  1. Gilbert LI, Frieden E (eds) (1981) Metamorphosis: a problem in developmental biology. Plenum, New York, pp 139–176Google Scholar
  2. Tata JR (1998) Hormonal signaling and postembryonic development. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  3. Yun-Bo Shi (2000) Amphibian metamorphosis. Wiley-Liss, New YorkGoogle Scholar


  1. Berry DL et al. (1998) The expression pattern of thyreoid hormone response genes in the tadpole tail identifies multiple resorption programs. Dev Biol 203: 12–23PubMedCrossRefGoogle Scholar
  2. Berry DL et al. (1998) The expression pattern of thyreoid hormone response genes in remodeling tadpole tissues defines distinct growth and resorption genes. Dev Biol 203: 24–35PubMedCrossRefGoogle Scholar
  3. Consoulas C et al. (2000) Behavioral transformations during metamorphosis: remodeling of neural and motor systems. Brain Res Bull 15: 571–583CrossRefGoogle Scholar
  4. Gilbert LI, Goodman W (1981) Chemistry, metabolism, and transport of hormones controlling insect metamorphosis. In: Gilbert LI, Frieden E (eds) Metamorphosis: a problem in developmental biology. Plenum, New York, pp 139–176Google Scholar
  5. Huang H, Brown DD (1999) Prolactin is not a juvenile hormone in Xenopus laevis metamorphosis. PNAS 97: 195–199CrossRefGoogle Scholar
  6. Hiruma K et al. (1999) Juvenile hormone modulates 20-hydro-xyecdysone-inducible ecdysone receptor and ultraspiracle gene expression in the tobacco hornworm, Manduca sexta. Dev Genes Evol 209: 18–30PubMedCrossRefGoogle Scholar
  7. Mesce KA, Fahrbach SE (2002) Integration of endocrine signals that regulate insect ecdysis. Frontiers in Neuroendo-crinology 23: 179–199CrossRefGoogle Scholar
  8. Nishikawa A, Hayashi H (1999) T3-hydrocortisone synergism on adult-type erythroblast proliferation and T3-mediated apoptosis of larval-type erythroblasts during erythropoiet-ic conversion in Xenopus laevis. Histochem Cell Biol 111: 325–334PubMedCrossRefGoogle Scholar
  9. Pratt GE et al. (1980) Lethal metabolism of precocene-I to a reactive epoxide by locust corpora allata. Nature (London) 284: 320–323CrossRefGoogle Scholar
  10. Riddiford LM et al. (2000) Ecdysone receptors and their biological functions. Vitamines and Hormones 2000: 601–673Google Scholar
  11. Sachs LM et al. (2000) Dual functions of thyroid hormone receptors during Xenopus development. Comparative Bio-chem Physiol B: Biochem Mol Biol 126: 199–211CrossRefGoogle Scholar
  12. Schmutterer H (ed) (1995) The Neem tree. VCH, WeinheimGoogle Scholar
  13. Shi Y-B et al. (1996) Tadpole competence and tissue-specific temporal regulation of amphibian metamorphosis: roles of thyroid hormone and its receptors. Bioessays 18: 391–339PubMedCrossRefGoogle Scholar
  14. Shi Y-B, Ishizuya-Oka A (2000) Thyroid hormone regulation of apoptotic tissue remodeling: implications from molecular analysis of amphibian metamorphosis. Progress in Nucleic Acid Research and Molecular Biology 2000: 6553–100Google Scholar
  15. Spindler K-D (1991) Roles of morphogenetic hormones in the metamorphosis of arthropods other than insects. In: Gupta AP (ed) Morphogenetic hormones of arthropods. Rutgers, pp 131–149Google Scholar
  16. Tata JR (1999) Amphibian metamorphosis as a model for studying the developmental actions of thyroid hormone. Biochimie 81: 359–366PubMedCrossRefGoogle Scholar
  17. Tata JR (2000) Autoinduction of nuclear hormone receptors during metamorphosis and its significance. Insect Biochem Mol Biol 30: 645–651PubMedCrossRefGoogle Scholar
  18. Thummel CS (1996) Flies on steroids. Drosophila metamorphosis and the mechanisms of steroid hormone action. Trends Genet 12: 306–310PubMedCrossRefGoogle Scholar
  19. Tissot M, Stacker RF (2000) Metamorphosis in Drosophila and other insects: the fate of neurons throughout the stages. Progress in Neurobiology 62: 89–111PubMedCrossRefGoogle Scholar
  20. Tobe SS, Bedena WG (1999) The regulation of juvenile hormone production in arthropods. Functional and evolutionary perspectives. Annales NY Acad Sci 1999: 897300–10Google Scholar
  21. Truman JW, Riddiford LM (1999) The origins of insect metamorphosis. Nature 401: 447–452PubMedCrossRefGoogle Scholar
  22. Yamamoto T et al. (2000) Cloning of cDNA for Xenopus prolactin receptor and its metamorphic expression profile. Dev Growth Diff 42: 167–174CrossRefGoogle Scholar
  23. Yun-Bo Shi (1999) Amphibian metamorphosis. John Wiley & SonsGoogle Scholar
  24. Zitnan D et al. (1996) Identification of Ecdysis-triggering hormone from an epitracheal endocrine system. Science 271: 88–91PubMedGoogle Scholar

Neues zur molekularen Wirkung der Hormone

  1. Hammes A et al. (2005) Role of endocytosis in cellular uptake of sex steroids. Cell 122(5): 751–762PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Personalised recommendations