Skip to main content

Thermodynamic Analysis of Lysozyme Denaturation by Surfactants

  • Conference paper
Smart Colloidal Materials

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 133))

Abstract

Spectroscopic techniques (UV absorption, fluorescence and circular dichroism) are applied for probing the conformational stability of lysozyme as a model protein after the impact of surfactants. The investigations allow the equilibrium constant, K, and the free energy change, ΔG, of the transition from the folded (native) to the unfolded (denatured) state to be estimated. ΔG at 25 °C in the absence of additives allows quantifying the conformational stability of the protein. Though the results are based on the validity of several assumptions regarding folding/unfolding mechanism, evaluation procedure, and environmental conditions, the thermodynamics of surfactant-induced unfolding may be estimated. Compared to the unfolding induced by the chaotropic denaturant guanidinium chloride, cationic and zwitterionic surfactants are found to yield lower ΔG values. In the case of lysozyme, anionic and nonionic surfactants did not result in transition curves. The interpretation of the transition curves indicated the existence of a two-state behavior. Quantities which do not significantly depend on the unfolding mechanism, such as the midpoints of denaturant concentrations and thermal unfolding curves, c 1/2 and T m, may also be applied for comparing conformational stabilities of proteins, even in the case of irreversible transitions. The evaluation of the thermal denaturation allows the derivation of enthalpy and entropy changes, ΔH and ΔS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Creighton TE (1993) Proteins. Structures and Molecular Properties, 2nd edn. Freeman, New York

    Google Scholar 

  2. Durchschlag H, Zipper P (2004) Prog Colloid Polym Sci 127:98–112

    CAS  Google Scholar 

  3. Jones MN (1988) In: Jones MN (ed) Biochemical Thermodynamics, 2nd edn. Elsevier, Amsterdam, p 182–240

    Google Scholar 

  4. Jones MN, Chapman D (1995) Micelles, Monolayers, and Biomembranes. Wiley-Liss, New York

    Google Scholar 

  5. Tiefenbach K-J, Durchschlag H, Schneider G, Jaenicke R (2003) Prog Colloid Polym Sci 122:130–140

    Article  CAS  Google Scholar 

  6. Durchschlag H, Tiefenbach K-J, Bayersdorfer F, Pachmann G, Jaenicke R (2003) Jorn Com Esp Deterg 33:281–293

    CAS  Google Scholar 

  7. Tiefenbach K-J, Durchschlag H, Jaenicke R (2004) Prog Colloid Polym Sci 127:136–147

    CAS  Google Scholar 

  8. Schmid FX (1997) In: Creighton TE (ed) Protein Structure: A Practical Approach, 2nd edn. IRL, Oxford, p 261–297

    Google Scholar 

  9. Shirley BA (1995) Methods in Molecular Biology, vol 40: Protein Stability and Folding: Theory and Practice. Humana Press, Totowa NJ

    Google Scholar 

  10. Demchenko AP (1986) Ultraviolet Spectroscopy of Proteins. Springer, Berlin

    Google Scholar 

  11. Lakowicz JR (1999) Principles of Fluorescence Spectroscopy, 2nd edn. Kluwer/Plenum, New York

    Google Scholar 

  12. Fasman GD (1996) Circular Dichroism and the Conformational Analysis of Biomolecules. Plenum, New York

    Google Scholar 

  13. Holtzhauer M (1996) Methoden in der Proteinanalytik. Springer, Berlin

    Google Scholar 

  14. Winter R, Noll F (1998) Methoden der Biophysikalischen Chemie. Teubner, Stuttgart

    Google Scholar 

  15. Durchschlag H, Tiefenbach K-J, Gebauer S, Jaenicke R (2001) J Mol Struct 563–564:449–455

    Article  Google Scholar 

  16. Durchschlag H, Tiefenbach K-J, Weber R, Kuchenmüller B, Jaenicke R (2000) Colloid Polym Sci 278:312–320

    Article  CAS  Google Scholar 

  17. Freire E (1995) Methods Mol Biol 40:191–218

    CAS  Google Scholar 

  18. Pace CN (1986) Methods Enzymol 131:266–280

    CAS  Google Scholar 

  19. Pace CN, Shirley BA, Thomson JA (1989) In: Creighton TE (ed) Protein Structure: A Practical Approach. IRL, Oxford, p 311–330

    Google Scholar 

  20. Shirley BA (1992) In: Ahern TJ, Manning MC (eds) Stability of Protein Pharmaceuticals, Part A: Chemical and Physical Pathways of Protein Degradation. Plenum, New York, p 167–194

    Google Scholar 

  21. Shirley BA (1995) Methods Mol Biol 40:177–190

    CAS  Google Scholar 

  22. Pfeil W (1986) In: Hinz H-J (ed) Thermodynamic Data for Biochemistry and Biotechnology. Springer, Berlin, p 349–376

    Google Scholar 

  23. Pfeil W (1998) Protein Stability and Folding: A Collection of Thermodynamic Data. Springer, Berlin, and (2001) Supplement 1

    Google Scholar 

  24. Fukushima K, Murata Y, Nishikido N, Sugihara G, Tanaka M (1981) Bull Chem Soc Jpn 54:3122–3127

    Article  CAS  Google Scholar 

  25. Subramanian M, Sheshadri BS, Venkatappa MP (1984) J Biochem 95:413–421

    CAS  Google Scholar 

  26. Ahmad F, Bigelow CC (1982) J Biol Chem 257:12935–12938

    CAS  Google Scholar 

  27. Pfeil W (1988) In: Jones MN (ed) Biochemical Thermodynamics, 2nd edn. Elsevier, Amsterdam, p 53–99

    Google Scholar 

  28. Pfeil W (1996) In: Holtzhauer M (ed) Methoden in der Proteinanalytik. Springer, Berlin, p 276–310

    Google Scholar 

  29. Aune KC, Tanford C (1969) Biochemistry 8:4586–4590

    Article  CAS  Google Scholar 

  30. Greene RF Jr, Pace CN (1974) J Biol Chem 249:5388–5393

    CAS  Google Scholar 

  31. Ahmad F, Contaxis CC, Bigelow CC (1983) J Biol Chem 258:7960–7963

    CAS  Google Scholar 

  32. Makhatadze GI, Privalov PL (1992) J Mol Biol 226:491–505

    Article  CAS  Google Scholar 

  33. Gupta R, Ahmad F (1999) Biochemistry 38:2471–2479

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Walter Richtering

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eckert, C., Durchschlag, H., Tiefenbach, KJ. (2006). Thermodynamic Analysis of Lysozyme Denaturation by Surfactants. In: Richtering, W. (eds) Smart Colloidal Materials. Progress in Colloid and Polymer Science, vol 133. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-32702-9_20

Download citation

Publish with us

Policies and ethics