Skip to main content

The BY-2 Cell Line as a Tool to Study Auxin Transport

  • Chapter
Tobacco BY-2 Cells: From Cellular Dynamics to Omics

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 58))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benková E, Michniewicz M, Sauer M, Teichmann M, Seifertová D, Jürgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602

    Article  PubMed  Google Scholar 

  • Blakeslee JJ, Peer WA, Murphy AS (2005) Auxin transport. Curr Opin Plant Biol 8:494–500

    Article  PubMed  CAS  Google Scholar 

  • Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44

    Article  PubMed  CAS  Google Scholar 

  • Butler JH, Hu SQ, Brady SR, Dixon MW, Muday GK (1998) In vitro and in vivo evidence for actin association of the naphthylphthalamic acid-binding protein from zucchini hypocotyls. Plant J 13:291–301

    Article  PubMed  CAS  Google Scholar 

  • Campanoni P, Nick P (2005) Auxin-dependent cell division and cell elongation. 1-naphthaleneacetic acid and 2,4-dichlorophenoxyacetic acid activate different pathways. Plant Physiol 137:939–948

    Article  PubMed  CAS  Google Scholar 

  • Campanoni P, Petrášek J, Opatrný Z, Nick P (2001) Manipulation of cell axis, polarity and the exit fromthe cell cycle via the level and balance of different auxins. Proc 17th IPGSA Conference, 1–6 July, Brno, Czech Republic, p 95

    Google Scholar 

  • Campanoni P, Blasius B, Nick P (2003) Auxin transport synchronizes the pattern of cell division in a tobacco cell line. Plant Physiol 133:1251–1260

    Article  PubMed  CAS  Google Scholar 

  • Cande WZ, Goldsmith MHM, Ray PM (1973) Polar auxin transport and auxin-induced elongation in the absence of cytoplasmic streaming. Planta 111:279–296

    Article  CAS  Google Scholar 

  • Cox DN, Muday GK (1994) NPA binding activity is peripheral to the plasma membrane and is associated with the cytoskeleton. Plant Cell 6:1941–1953

    Article  PubMed  CAS  Google Scholar 

  • Delbarre A, Muller P, Imhoff V, Morgat JL, Barbier-Brygoo H (1994) Uptake, accumulation and metabolism of auxins in tobacco leaf protoplasts. Planta 195:159–167

    Article  CAS  Google Scholar 

  • Delbarre A, Muller P, Imhoff V, Guern J (1996) Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells. Planta 192:538–541

    Google Scholar 

  • Delbarre A, Muller P, Guern J (1998) Short-lived and phosphorylated proteins contribute to carrier-mediated efflux, but not to influx, of auxin in suspension-cultured tobacco cells. Plant Physiol 116:833–844

    Article  PubMed  CAS  Google Scholar 

  • Dixon MW, Jacobson JA, Cady CT, Muday GK (1996) Cytoplasmic orientation of the naphthylphthalamic acid-binding protein in zucchini plasma membrane vesicles. Plant Physiol 112:421–432

    PubMed  CAS  Google Scholar 

  • Friml J, Palme K (2002) Polar auxin transport — old questions and new concepts? Plant Mol Biol 49:273–284

    Article  PubMed  CAS  Google Scholar 

  • Friml J, Wisniewska J (2005) Auxin as an intercellular signal. In: Fleming A (ed) Annual plant reviews, vol. 16. Intercellular communication in plants. Blackwell Publishing, Oxford, pp 1–26

    Google Scholar 

  • Friml J, Benková E, Blilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jürgens G, Palme K (2002a) AtPIN4mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108:661–673

    Article  PubMed  CAS  Google Scholar 

  • Friml J, Wisniewska J, Benková E, Mendgen K, Palme K (2002b) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809

    PubMed  Google Scholar 

  • Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jürgens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153

    Article  PubMed  CAS  Google Scholar 

  • Friml J, Yang X, Michniewicz M, Weijers D, Quint A, Tietz O, Benjamins R Ouwerkerk PBF, Ljung K, Sandberg G, Hooykaas PJJ, Palme K, Offringa R (2004) A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306:862–865

    Article  PubMed  CAS  Google Scholar 

  • Geisler M, Kolukisaoglu HU, Billion K, Berger J, Saal B, Bouchard R, Frangne N, Koncz-Kalman Z, Koncz C, Dudler R, Blakeslee J, Murphy AS, Martinoia E, Schulz B (2003) TWISTED DWARF1, a unique plasma membrane-anchored immunophilin-like protein, interactswith Arabidopsis multidrug resistance-like transporters AtPGP1 and AtPGP19. Mol Biol Cell 14:4238–4249

    Article  PubMed  CAS  Google Scholar 

  • Geldner N (2004) The plant endosomal system-its structure and role in signal transduction and plant development. Planta 219:547–560

    Article  PubMed  CAS  Google Scholar 

  • Geldner N, Friml J, Stierhof YD, Jürgens G, Palme K (2001) Auxin transport inhibitors block PIN 1 cycling and vesicle trafficking. Nature 413:425–428

    Article  PubMed  CAS  Google Scholar 

  • Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jürgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230

    Article  PubMed  CAS  Google Scholar 

  • Geldner N, Richter S, Vieten A, Marquardt S, Torres-Ruiz RA, Mayer U, Jürgens G (2004) Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related, post-embryonic development of Arabidopsis. Development 131:389–400

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith MHM (1977) The polar transport of auxin. Annu Rev Plant Physiol 28:439–478

    Article  CAS  Google Scholar 

  • Holweg C, Nick P (2004) Arabidopsis myosin XI mutant is defective in organelle movement and polar auxin transport. Proc Natl Acad Sci USA 101:10488–10493

    Article  PubMed  CAS  Google Scholar 

  • Holweg C, Honsel A, Nick P (2003) A myosin inhibitor impairs auxin-induced cell division. Protoplasma 222:193–204

    Article  PubMed  CAS  Google Scholar 

  • Imhoff V, Muller P, Guern J, Delbarre A (2000) Inhibitors of the carrier-mediated influx of auxin in suspension-cultured tobacco cells. Planta 210:580–588

    Article  PubMed  CAS  Google Scholar 

  • Laňková M, Petrášek J, Perry L, Dobrev P, Zažímalová E (2005) Characterisation of tobacco cell lines transformed with the PaLAX1 gene. Biol Plant 49(Suppl):S12

    Google Scholar 

  • Ljung K, Hull AK, Celenza J, Yamada M, Estelle M, Normanly J, Sandberg G (2005) Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell 17:1090–1104

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka K, Demura T, Galis I, Horiguchi T, Sasaki M, Tashiro G, Fukuda HA (2004) Comprehensive gene expression analysis toward the understanding of growth and differentiation of tobacco BY-2 cells. Plant Cell Physiol 45:1280–1289

    Article  PubMed  Google Scholar 

  • Mattsson J, Ckurshumova W, Berleth T (2003) Auxin signaling in Arabidopsis leaf vascular development. Plant Physiol 131:1327–1339

    Article  PubMed  CAS  Google Scholar 

  • Morris DA (2000) Transmembrane auxin carrier systems — dynamic regulators of polar auxin transport. Plant Growth Regul 32:161–172

    Article  PubMed  CAS  Google Scholar 

  • Morris DA, Robinson JS (1998) Targeting of auxin carriers to the plasma membrane: differential effects of brefeldin A on the traffic of auxin uptake and efflux carriers. Planta 205:606–612

    Article  CAS  Google Scholar 

  • Morris DA, Friml J, Zažímalová E (2004) TThe transport of auxins. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action! Kluwer, Dordrecht, pp 437–470

    Google Scholar 

  • Muday GK, DeLong A (2001) Polar auxin transport: controlling where and how much. Trends Plant Sci 6:535–542

    Article  PubMed  CAS  Google Scholar 

  • Muday GK, Peer WA, Murphy AS (2003) Vesicular cycling mechanisms that control auxin transport polarity. Trends Plant Sci 8:301–304

    Article  PubMed  CAS  Google Scholar 

  • Murphy AS, Hoogner KR, Peer WA, Taiz L (2002) Identification, purification and molecular cloning of N-1-naphthylphthalamic acid-binding plasma membrane-associated aminopeptidases from Arabidopsis. Plant Physiol 128:935–950

    Article  PubMed  CAS  Google Scholar 

  • Murphy AS, Bandyopadhyay A, Holstein SE, Peer WA (2005) Endocytotic cycling of PM proteins. Annu Rev Plant Biol 56:221–251

    Article  PubMed  CAS  Google Scholar 

  • Opatrný Z, Opatrná J (1976) The specificity of the effect of 2,4-D and NAA on the growth, micromorphology, and the occurrence of starch in long-termNicotiana tabacum cell strains. Biol Plant 18:381–400

    Article  Google Scholar 

  • Paciorek T, Zažímalová E, Ruthardt N, Petrášek J, Stierhof Y-D, Kleine-Vehn J, Morris DA, Emans N, Jürgens G, Geldner N, Friml J (2005) Auxin inhibits endocytosis and promotes its own efflux from cells. Nature 435:1251–1256

    Article  PubMed  CAS  Google Scholar 

  • Paponov IA, Teale WD, Trebar M, Blilou I, Palme K (2005) The PIN auxin efflux facilitators: evolutionary and functional perspectives. Trends Plant Sci 10:170–177

    Article  PubMed  CAS  Google Scholar 

  • Petrášek J, Elčkner M, Morris DA, Zažímalová E (2002) Auxin efflux carrier activity and auxin accumulation regulate cell division and polarity in tobacco cells. Planta 216:302–308

    Article  PubMed  CAS  Google Scholar 

  • Petrášek J, Černá A, Schwarzerová K, Elčkner M, Morris DA, Zažímalová E (2003) Do phytotropins inhibit auxin efflux by impairing vesicle traffic? Plant Physiol 131:254–263

    Article  PubMed  CAS  Google Scholar 

  • Petrášek J, Seifertová D, Perry L, Skůpa P, Čovanová M, Zažímalová E (2005) Expression of AtPINs in tobacco cells increases auxin efflux and induces phenotype changes typical for auxin depletion. Biol Plant 49(Suppl):S10

    Google Scholar 

  • Raven JA (1975) Transport of indoleacetic acid in plant cells in relation to pH and electrical potential gradients, and its significance for polar IAA transport. New Phytol 74:163–174

    Article  CAS  Google Scholar 

  • Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260

    Article  PubMed  CAS  Google Scholar 

  • Robinson JS, Albert AC, Morris DA (1999) Differential effects of brefeldin A and cycloheximide on the activity of auxin efflux carriers in Cucurbita pepo L. J Plant Physiol 155:678–684

    CAS  Google Scholar 

  • Rubery PH (1990) Phytotropins: receptors and endogenous ligands. Symp Soc Exp Biol 44:119–146

    PubMed  CAS  Google Scholar 

  • Rubery PH, Sheldrake AR (1974) Carrier-mediated auxin transport. Planta 118:101–121

    Article  CAS  Google Scholar 

  • Sakai A, Miyazawa Y, Kuroiwa T (2004) Studies on dynamic changes of organelles using tobacco BY-2 as the model plant cell line. In: Nagata T, Hasezawa S, Inzé D (eds) Biotechnology in agriculture and forestry, vol. 53. Tobacco BY-2 cells. Springer, Berlin Heidelberg New York, pp 192–216

    Google Scholar 

  • Skůpa P, Černá A, Petrášek J, Perry L, Seifertová D, Zažímalová E (2005) Characterisation of tobacco cell lines transformed with the AtPIN1, 4, 6, 7 genes from Arabidopsis. Biol Plant 49(Suppl):S12

    Google Scholar 

  • Sussman MR, Gardner G (1980) Solubilization of the receptor for N-1-naphthylphthalamic acid. Plant Physiol 66:1074–1078

    Article  PubMed  CAS  Google Scholar 

  • Teale WD, Paponov IA, Ditengou F, Palme K (2005) Auxin and the developing root of Arabidopsis thaliana. Physiol Plant 123:130–138

    Article  CAS  Google Scholar 

  • Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971

    Article  PubMed  CAS  Google Scholar 

  • Winicur ZM, Zhang GF, Staehelin LA (1998) Auxin deprivation induces synchronous Golgi differentiation in suspension-cultured tobacco BY-2 cells. Plant Physiol 117:501–513

    Article  PubMed  CAS  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Scheres, B (2005) Dissection of Arabidopsis ADP-RIBOSYLATION FACTOR 1 function in epidermal cell polarity. Plant Cell 17:525–536

    Article  PubMed  CAS  Google Scholar 

  • Zažímalová E, Petrášek J, Morris DA (2003) The dynamics of auxin transport in tobacco cells. Bulgarian J Plant Physiol Spec Issue:207–224

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Petrášek, J., Zažímalová, E. (2006). The BY-2 Cell Line as a Tool to Study Auxin Transport. In: Nagata, T., Matsuoka, K., Inzé, D. (eds) Tobacco BY-2 Cells: From Cellular Dynamics to Omics. Biotechnology in Agriculture and Forestry, vol 58. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-32674-X_8

Download citation

Publish with us

Policies and ethics