Skip to main content

Development of Chemical Microreactors by Enzyme Immobilization onto Textiles

  • Chapter
Proteins at Solid-Liquid Interfaces

Part of the book series: Principles and Practice ((PRINCIPLES))

Abstract

Advanced biotechnological techniques are now being used in the chemical engineering of membrane processes, notably enzyme immobilization procedures, biosensors, and, more recently, proteomics. The knowledge and increasingly fine control of the production and reactivity of enzymes also profits research whose aim is to use on a large scale the catalytic material properties of biocatalysts (enzymes). These materials with reactive properties could be introduced into membrane technology, opening as a new field the treatment of liquid media according to the concept of membrane bioreactors, where the membrane itself acts as the chemical reactor. As will be discussed herein, the ionic-exchanging textiles will be involved in this futurology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aebi HE (1984) Methods of Enzymatic Analysis, vol. 3, (3rd edn). Verlag Chemie, Berlin, p 273

    Google Scholar 

  • Albayrak N, Yang ST (2002) Immobilisation of Aspergillus oryzae galactosidase on tosylated cotton cloth. Enzyme Microb Technol 31:371–383

    Article  CAS  Google Scholar 

  • Arica MY, Oktem H A, Oktem Z, Tuncel SA (1999) Immobilization of catalase in polyisopropylacrylamide-co-hydroxyethylmethacrylate thermally reversible hydrogels. Polym Intern 48:879–887

    Article  CAS  Google Scholar 

  • Buschle-Diller G, El Mogahzy Y, Inglesby MK, Zeronian SH (1998) Effects of scouring with enzyme, organic solvents, and caustic soda on the properties of hydrogen peroxide bleached cotton yarn. Text Res J 68:920–929

    CAS  Google Scholar 

  • Chance B (1948) The enzyme-substrate compounds of catalase and peroxides Nature 161:914–917

    CAS  Google Scholar 

  • Coche-Guérente L, Cosnier S, Innocent C, Mailley P (1995) Development of amperometric biosensors based on the immobilization of enzymes in polymer films electrogenerated from a series of amphiphilic pyrrole derivatives. Anal Chim Acta 311:23–30

    Article  Google Scholar 

  • Coche-Guerente L, Deronzier A, Mailley P, Moutet JC (1994) Electrochemical immobilization of glucose oxidase in poly(amphiphilic pyrrole) films and its application to the preparation of an amperometric glucose sensor. Anal Chim Acta 289:143–153

    Article  CAS  Google Scholar 

  • Coche L, Moutet JC (1987) Catalysis of 1,2-dibromo-1,2-diphenylethane reduction on platinum and carbon felt electrodes coated by polypyrrole films containing 4,4’-bipyridinium groups. J Electroanal Chem 224:111–124

    Article  CAS  Google Scholar 

  • Confort AR, Albert EC, Langer R (1989) Immobilized enzymes cellulose hollow fibers: part I: immobilization of heparinase. Biotechnol Bioeng 34:1366–1373

    Article  Google Scholar 

  • Confort AR, Mullon CJP, Langer R (1988) The influence of bond chemistry on immobilized enzyme systems for ex vivo use. Biotechnol Bioeng 32:554–563

    Article  Google Scholar 

  • Cosnier S (1999) Biomolecule immobilizationonelectrode surfacesby entrapment or attachment to electrochemically polymerized films. A review. Biosens Bioelectron 14:443–460

    Article  CAS  Google Scholar 

  • Cosnier S, Innocent C (1993) A new strategy for the construction of a tyrosinase-based amperometric phenol and o-diphenol sensor. Bioelectrochem Bioenerg 31:147–160

    Article  CAS  Google Scholar 

  • Cosnier S, Perrot H, Wessel R (2001) Biotinylated polypyrrole modified quartz crystal microbalance for the fast and reagentless determination of avidin concentration. Electroanalysis 13:971–982

    Article  CAS  Google Scholar 

  • Cosnier S, Stoytcheva M, Senillou A, Perrot H, Furriel RPM, Leone FA (1999) A biotinylated conducting polypyrrole for the spatially controlled construction of amperometric biosensor. Anal Chem 71:3692–3697

    Article  CAS  Google Scholar 

  • Dalmon J-A (1997) Catalyticmembrane reactors. In: Ertl G, Knözinger H, Weitkamp J (eds) Handbook of Heterogeneous Catalysis. Wiley-VCH, Weinheim, pp 1387–1398

    Google Scholar 

  • Dean RB (1991) Processes for water reclamation. Waste Manage Res 9:425–430

    Article  CAS  Google Scholar 

  • Dejean E, Laktionov E, Sandeaux J, Sandeaux R, Pourcelly G, Gavach C (1997) Electrodeionization with ion-exchange textile for the production of high resistivity water: influence of the nature of the textile. Desalination 114:165–173

    Article  CAS  Google Scholar 

  • Deng HT, Xu ZK, Wu J, Ye P, Liu ZM, Seta P (2004) Acomparative study on lipaseimmobilized polypropylene microfiltration membranes modified by sugar-containing polymer and polypeptide. J Mol Catal B Enzym 28:95–100

    Article  CAS  Google Scholar 

  • Devi S, Guthrie JT, Beddows CG (1990) The immobilization of trypsin onto irradiated oxidized natural rubbers converted to the natural rubber-g-Co-HEMA system. Radiat Phys Chem 36:703–707

    CAS  Google Scholar 

  • Drogui P, Elmaleh S, Rumeau M, Bernard C, Rambaud A (2001) Hydrogen peroxide production by water electrolysis: application to disinfection. J Appl Electrochem 31:877–882

    Article  CAS  Google Scholar 

  • Eltsefon BS, Vengerova NA, Vysotina TA, Rudman AR, Yermakova LN, Irkley VM, Ryabchenko AS, Kuznetsova NA, Lykovykh LM (1988–89) Structure and transport properties of the Ultracell membrane for hemodialysis. Biomater Artif Cells Artif Organs 16:967–975

    Google Scholar 

  • Eremin AN, Otyutskii SV, Metelissa DI (1995) Properties of catalaseimmobilized oncellulose in aqueous and micellar media. Kinet Catal 36:776–784

    CAS  Google Scholar 

  • Freitas dos Santos LM, Pavasant P, Strachan LF, Pistikopoulos EN, Livingston AG (1997) Membrane attached biofilms for waste treatment-fundamentals and applications. Pure Appl Chem 69:2459–2469

    CAS  Google Scholar 

  • Freeman KS, Tang TT, Shah RDE, Kiserov DJ, Gown LB (2000) Activity and stability of lipase in AOT reversed micelles with bile salt cosurfactant. J Phys Chem B 104:9312–9316

    Article  CAS  Google Scholar 

  • Giacomini C, Villarino A, Franco-Fraguas L, Batista-Viera F (1998) Immobilization of galactosidase from Kluveromyces lactis on silica and agarose: comparison of different methods. J Mol Catal B Enzym 4:313–327

    Article  CAS  Google Scholar 

  • Gonzalez-Garcia J, Bonete P, Exposito E, Montiel V, Aldaz A, Torregrosa-Marcia R (1999) Characterization of a carbon felt electrode: structural and physical properties. J Mater Chem 9:419–426

    Article  CAS  Google Scholar 

  • Green MJ, Hill HAAO (1984) Chemistry of dioxygen. Methods Enzymol 105:3–22

    CAS  Google Scholar 

  • Huang TC, Chen DH (1992) A study of removal of urea from aqueous solution with immobilized urease and electrodialysis. J Chem Tech Biotechnol 55:191–199

    CAS  Google Scholar 

  • Huang TC, Chen DH (1993) Coupling of urea hydrolysis ammonium removal in an electrodialyzer with immobilized urease. Chem Eng Commun 1205:191–201

    Google Scholar 

  • Institut Textile de France (1987) Celluloses greffeesCapt’ion:unechangeurd’ions à cinetique rapide, document technique

    Google Scholar 

  • Iqbal SS, Bruno MW, Bronk JG, Batt BV Chambers CA (2000) A review ofmolecular recognition technologies for detection of biological threat agents. Biosens Bioelectron 15:549–578

    Article  CAS  Google Scholar 

  • Ishihara K, Shinozuka T, Hanazaki Y, Iwasaki Y, Nakabayashi N (1999) Improvement of blood compatibility on cellulose hemodialysis membrane: IV. Phospholipid polymer bonded to the membrane surface. J Biomater Sci Polym Ed 10:271–282

    CAS  Google Scholar 

  • Kaewprasit C, Hequet E, Abidi N, Gourlot JP (1998) Application of methylene blue adsorption to cotton fiber specific surface areameasurement: Part I. Methodology. J Cotton Sci 2:164–173

    Google Scholar 

  • Kamath N, Melo JS, D’Souza SF (1988) Urease immobilized on polyethyleneimine cotton cloth. Appl Biochem Biotechnol 19:251–258

    Article  CAS  Google Scholar 

  • Kumar SD, Kulkarni AV, Kalyanraman R, Krishnamoorthy TS (1997) Whole blood glucose determination using glucose oxidase immobilized on cotton cheese cloth. Anal Chim Acta 338:135–140

    Article  CAS  Google Scholar 

  • Lee S, Lueptow RM (2001) Membrane rejection of nitrogen compound. Environ Sci Technol 35:3008–3018

    Article  CAS  Google Scholar 

  • Marchand Brynaert J (1999) Surface functionalization of polymer membranes. In: Smith Sorensen T (ed) Surface Chemistry and Electrochemistry of Membranes, Surfactant Science Series, vol 79. Marcel Dekker, New York, pp 91–124

    Google Scholar 

  • Nicoholls P, Schonbaum GR (1963) Catalases. In: Boyer P, Lardy H, Myrback K (eds) The Enzymes, vol. VIII (2nd edn). Academic Press, New York, pp. 147–225

    Google Scholar 

  • Nolan Etters J (1998) Emerging opportunities for enzyme use in textiles. Colourage Annu 87–92

    Google Scholar 

  • Rao S, Anderson KW, Bachas LG (1999) Controlled layer-by-layer immobilization of horseradish peroxidase. Biotechnol Bioeng 65:389–396

    Article  CAS  Google Scholar 

  • Schussel LJ, Atwater JE (1995) A urease bioreactor for water reclamation aboard manned spacecraft. Chemosphere 30:985–994

    Article  CAS  Google Scholar 

  • Schmidt B (1996) Membranes in artificial organs. Artif Organs 20:375–380

    Article  CAS  Google Scholar 

  • Vasudevan PT, Weiland RH (1990) Deactivationof catalase by hydrogen peroxide. Biotechnol Bioeng 36:783–789

    Article  CAS  Google Scholar 

  • Vo-Dinh, Cullum BM (2000) Biosensors and bioships: advances in biological and medical diagnostics. Fresenius J Anal Chem 336:540–551

    Article  Google Scholar 

  • Wang H Y, Kobayashi T, Saitoh H, Fujii N (1996) Porous polydimethyl-siloxanemembranes for enzyme immobilization. J Appl Polym Sci 60:2339–2346

    Article  CAS  Google Scholar 

  • Worthington BC (1988) Peroxidase. In: Worthington Enzyme Manual. Worthington Biochemical Co. Freehold, 254

    Google Scholar 

  • Yakup Arica M(2000) Epoxy-derived pHEMAmembranes for use bioactive macromolecules immobilization: covalently bound urease in a continuous model system. J Appl Polym Sci 77:2000–2008

    Article  Google Scholar 

  • Yamazaki H, Cheok RKH, Fraser ADE (1984) Immobilization of invertase on polyethyleneimine-coated cotton cloth. Biotechnol Lett 6:165–170

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Innocent, C., Seta, P. (2006). Development of Chemical Microreactors by Enzyme Immobilization onto Textiles. In: Déjardin, P. (eds) Proteins at Solid-Liquid Interfaces. Principles and Practice. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-32658-8_9

Download citation

Publish with us

Policies and ethics